#!python
# prepared invocations and structures -----------------------------------------
import pycuda.driver as cuda
import pycuda.autoinit
import numpy
from pycuda.compiler import SourceModule
class DoubleOpStruct:
mem_size = 8 + numpy.intp(0).nbytes
def __init__(self, array, struct_arr_ptr):
self.data = cuda.to_device(array)
self.shape, self.dtype = array.shape, array.dtype
cuda.memcpy_htod(int(struct_arr_ptr), numpy.getbuffer(numpy.int32(array.size)))
cuda.memcpy_htod(int(struct_arr_ptr) + 8, numpy.getbuffer(numpy.intp(int(self.data))))
def __str__(self):
return str(cuda.from_device(self.data, self.shape, self.dtype))
#pointer to both datasets
struct_arr = cuda.mem_alloc(2 * DoubleOpStruct.mem_size)
#pointer to the second dataset
do2_ptr = int(struct_arr) + DoubleOpStruct.mem_size
array1 = DoubleOpStruct(numpy.array([1, 2, 3], dtype=numpy.float32), struct_arr)
array2 = DoubleOpStruct(numpy.array([0, 4], dtype=numpy.float32), do2_ptr)
print "original arrays"
print array1
print array2
mod = SourceModule("""
struct DoubleOperation {
int datalen, __padding; // so 64-bit ptrs can be aligned
float *ptr;
};
__global__ void double_array(DoubleOperation *a)
{
a = a + blockIdx.x;
for (int idx = threadIdx.x; idx < a->datalen; idx += blockDim.x)
{
float *a_ptr = a->ptr;
a_ptr[idx] *= 2;
}
}
""")
func = mod.get_function("double_array")
func(struct_arr, block = (32, 1, 1), grid=(2, 1))
print "doubled arrays"
print array1
print array2
func(numpy.intp(do2_ptr), block = (32, 1, 1), grid=(1, 1))
print "doubled second only"
print array1
print array2
#preparing function
# Passing block or shared not equal to None is djprecated as of version 2011.1.
#func.prepare("P", block=(32, 1, 1))
func.prepare("P")
#calling function
#func.prepared_call((2, 1), struct_arr)
#prepared_call(grid, block, pointer)
func.prepared_call((2,1),(32,1,1), struct_arr)
print "doubled again"
print array1
print array2
func.prepared_call((1, 1),(32,1,1), do2_ptr)
print "doubled second only again"
print array1
print array2
CategoryPyCuda