
High-Performance Scientific Computing
Lecture 9: Parallel Performance

MATH-GA 2011 / CSCI-GA 2945 · October 24, 2012

Software Single-thread performance Multi-thread performance



Today

Tool of the day: Shell scripting

Single-thread performance

Multi-thread performance

Software Single-thread performance Multi-thread performance



Bits and pieces

• Don’t have a project? Let’s fix that very soon

• HW5: soon

• HW6: due today

• Dec 5: Last day of regular class

• Dec 12: Legislative Day

• Dec 17/18/19: Project presentations

• Don’t have grade reports for HW1. . . 4? Talk to me

Software Single-thread performance Multi-thread performance



Outline

Tool of the day: Shell scripting

Single-thread performance

Multi-thread performance

Software Single-thread performance Multi-thread performance



Shell scripting

Demo time

Software Single-thread performance Multi-thread performance



Shell scripting

All you ever wanted to know about scripting:

• http://tldp.org/LDP/abs/html/

• man bash

Software Single-thread performance Multi-thread performance

http://tldp.org/LDP/abs/html/


Outline

Tool of the day: Shell scripting

Single-thread performance
How about actually doing work?
Compilers and what they do to your code

Multi-thread performance

Software Single-thread performance Multi-thread performance



Recap

Single-thread performance recap:

• CPU bits
• Bus, Register File, ALU, Memory Interface, Machine language

• Memory hierarchy
• Latency, bandwidth
• Caches: lines, associativity
• Locality, working set

• Pipelines
• Dependencies
• Branch predictor
• Software pipelining, loop unrolling

Software Single-thread performance Multi-thread performance



Outline

Tool of the day: Shell scripting

Single-thread performance
How about actually doing work?
Compilers and what they do to your code

Multi-thread performance

Software Single-thread performance Multi-thread performance



Remember SIMD?

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 

GPU Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Same principle works well on CPUs, too!

Software Single-thread performance Multi-thread performance



Remember SIMD?

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 

GPU Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Same principle works well on CPUs, too!

Software Single-thread performance Multi-thread performance



Remember SIMD?

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 

GPU Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Same principle works well on CPUs, too!

Software Single-thread performance Multi-thread performance



Remember SIMD?

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  

20 

GPU Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Same principle works well on CPUs, too!

Software Single-thread performance Multi-thread performance



Remember SIMD?

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Add ALUs 

Fetch/ 
Decode 

Idea #2: 

Amortize cost/complexity of 
managing an instruction 
stream across many ALUs 

ALU 1 ALU 2 ALU 3 ALU 4 

ALU 5 ALU 6 ALU 7 ALU 8 

SIMD processing Ctx Ctx Ctx Ctx 

Ctx Ctx Ctx Ctx 

Shared Ctx Data  

20 

GPU Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Same principle works well on CPUs, too!

Software Single-thread performance Multi-thread performance



Talking to SIMD

Ways of expressing SIMD:

• Not at all (-ftree-vectorizer-verbose=2, pray)

• “Implicit” (OpenCL workgroups)

• “Explicit” (many ways)

OpenCL is also one of the saner ways of expressing explicit
vectorization.
(even on the CPU)

Other ways:

• “Intrinsics”: mm256 hadd ps

• GCC extensions

• ispc

Software Single-thread performance Multi-thread performance

https://github.com/ispc/ispc


Floating point

CL vector demo

Software Single-thread performance Multi-thread performance



Outline

Tool of the day: Shell scripting

Single-thread performance
How about actually doing work?
Compilers and what they do to your code

Multi-thread performance

Software Single-thread performance Multi-thread performance



Inside a compiler

Preprocessor

Parser

Code generator

Assembler

Linker

(Dynamic Linker)

Two subsequent stages agree
upon a data exchange format

“Intermediate Representation”–
often a little like assembly

Almost always more complicated:
“Passes” include optimizers, . . .
http://llvm.org/demo/

Software Single-thread performance Multi-thread performance

http://llvm.org/demo/


Inside a compiler

Preprocessor

Parser

Code generator

Assembler

Linker

(Dynamic Linker)

Two subsequent stages agree
upon a data exchange format

“Intermediate Representation”–
often a little like assembly

Almost always more complicated:
“Passes” include optimizers, . . .
http://llvm.org/demo/

Software Single-thread performance Multi-thread performance

http://llvm.org/demo/


Inside a compiler

Preprocessor

Parser

Code generator

Assembler

Linker

(Dynamic Linker)

Two subsequent stages agree
upon a data exchange format

“Intermediate Representation”–
often a little like assembly

Almost always more complicated:
“Passes” include optimizers, . . .
http://llvm.org/demo/

Software Single-thread performance Multi-thread performance

http://llvm.org/demo/


Compilers and the register file

Register allocator:

• Important

• Complicated

Failure: ‘Register Spill’

Not dramatic on the CPU (L1 is fast)

Very dramatic on the GPU

Demo

Software Single-thread performance Multi-thread performance



Compilers and the register file

Register allocator:

• Important

• Complicated

Failure: ‘Register Spill’

Not dramatic on the CPU (L1 is fast)

Very dramatic on the GPU

Demo
Registers most effective when
data can be reused many times

Software Single-thread performance Multi-thread performance



Pointer aliasing

Pointer aliasing demo

Not the only thing to go wrong with pointers. . .

Software Single-thread performance Multi-thread performance



Pointer aliasing

Pointer aliasing demo

Not the only thing to go wrong with pointers. . .

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK

“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK

“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

No difference on Sandy Bridge

More difference on other machines
(e.g. AMD Opteron)

Software Single-thread performance Multi-thread performance



Alignment

Match base address of:

• Single word: double,
float

• SIMD vector

• Larger structure

To:

• Natural word size

• Vector size

• Cache line

· · ·
Matched structure

OK“Bad”

Comes in two flavors:

• Actual alignment
malloc → posix memalign

• Compiler-known alignment
float attribute ((aligned (64))) *a

No difference on Sandy Bridge

More difference on other machines
(e.g. AMD Opteron)

Brief demo

Software Single-thread performance Multi-thread performance



Other compiler optimizations

More techniques:

• Inlining (see HW6)

• Unrolling

• Vectorization

Many of these need tunable parameters. From where?

• -march=native -mtune=native

• Profile-Guided Optimization

Software Single-thread performance Multi-thread performance



From the horses’ mouth

• AMD Optimization Manual
• Good source-level C part at the beginning

• Intel Optimization Manual
• Dual audience: Compiler writers, users

Grab bag of good practices:

• Use indices rather than pointers (easier to reason about)

• Extract common subexpressions

• Make functions static

• Use const

• Avoid store-to-load dependencies

Software Single-thread performance Multi-thread performance

http://support.amd.com/us/Processor_TechDocs/47414_15h_sw_opt_guide.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf


Outline

Tool of the day: Shell scripting

Single-thread performance

Multi-thread performance
Memory-related

Software Single-thread performance Multi-thread performance



Multi-thread performance

Difference to single-thread?

Memory System is (about) the only shared
resource.

All ‘interesting’ performance behavior of
multiple threads has to do with that.

Software Single-thread performance Multi-thread performance



Multi-thread performance

Difference to single-thread?

Memory System is (about) the only shared
resource.

All ‘interesting’ performance behavior of
multiple threads has to do with that.

Software Single-thread performance Multi-thread performance



Outline

Tool of the day: Shell scripting

Single-thread performance

Multi-thread performance
Memory-related

Software Single-thread performance Multi-thread performance



Multiple threads

Threads v. caches demo

Software Single-thread performance Multi-thread performance



Questions?

?

Software Single-thread performance Multi-thread performance



Image Credits

• Pebbles: sxc.hu/topfer

Software Single-thread performance Multi-thread performance


	Tool of the day: Shell scripting
	Single-thread performance
	How about actually doing work?
	Compilers and what they do to your code

	Multi-thread performance
	Memory-related


