
High-Performance Scientific Computing
Lecture 8: Single-thread Performance

MATH-GA 2011 / CSCI-GA 2945 · October 24, 2012

Software Closer to the machine Faster

Today

Tool of the day: Installing software

Closer to the machine

Making things go faster

Software Closer to the machine Faster

Bits and pieces

• HW4: tonight / early tomorrow

• HW6: due Saturday (ask for ext’n early)

• Last homework → project work after that

• Might issue problem sets for entertainment

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster

Software Closer to the machine Faster

Software Installation

Demo time

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine
Machine Language
Memory

Making things go faster

Software Closer to the machine Faster

A Basic Processor

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

(loosely based on Intel 8086)

Bonus Question:
What’s a bus?

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/Bus_(computing)

A Basic Processor

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

(loosely based on Intel 8086)

Bonus Question:
What’s a bus?

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/Bus_(computing)

Outline

Tool of the day: Installing software

Closer to the machine
Machine Language
Memory

Making things go faster

Software Closer to the machine Faster

A Very Simple Program

int a = 5;
int b = 17;
int z = a ∗ b;

4: c7 45 f4 05 00 00 00 movl $0x5,−0xc(%rbp)
b: c7 45 f8 11 00 00 00 movl $0x11,−0x8(%rbp)
12: 8b 45 f4 mov −0xc(%rbp),%eax
15: 0f af 45 f8 imul −0x8(%rbp),%eax
19: 89 45 fc mov %eax,−0x4(%rbp)
1c: 8b 45 fc mov −0x4(%rbp),%eax

Things to know:

• Addressing modes (Immediate, Register, Base plus Offset)

• 0xHexadecimal

• “AT&T Form”: (we’ll use this)
<opcode><size> <source>, <dest>

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/Addressing_mode
http://en.wikipedia.org/wiki/Hexadecimal

Another Look

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

4: c7 45 f4 05 00 00 00 movl $0x5,−0xc(%rbp)
b: c7 45 f8 11 00 00 00 movl $0x11,−0x8(%rbp)

12: 8b 45 f4 mov −0xc(%rbp),%eax
15: 0f af 45 f8 imul −0x8(%rbp),%eax
19: 89 45 fc mov %eax,−0x4(%rbp)
1c: 8b 45 fc mov −0x4(%rbp),%eax

Software Closer to the machine Faster

Another Look

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

4: c7 45 f4 05 00 00 00 movl $0x5,−0xc(%rbp)
b: c7 45 f8 11 00 00 00 movl $0x11,−0x8(%rbp)

12: 8b 45 f4 mov −0xc(%rbp),%eax
15: 0f af 45 f8 imul −0x8(%rbp),%eax
19: 89 45 fc mov %eax,−0x4(%rbp)
1c: 8b 45 fc mov −0x4(%rbp),%eax

Software Closer to the machine Faster

A Very Simple Program: Intel Form

4: c7 45 f4 05 00 00 00 mov DWORD PTR [rbp−0xc],0x5
b: c7 45 f8 11 00 00 00 mov DWORD PTR [rbp−0x8],0x11
12: 8b 45 f4 mov eax,DWORD PTR [rbp−0xc]
15: 0f af 45 f8 imul eax,DWORD PTR [rbp−0x8]
19: 89 45 fc mov DWORD PTR [rbp−0x4],eax
1c: 8b 45 fc mov eax,DWORD PTR [rbp−0x4]

• “Intel Form”: (you might see this on the net)
<opcode> <sized dest>, <sized source>

• Goal: Reading comprehension.

• Don’t understand an opcode?
Google “<opcode> intel instruction”.

Software Closer to the machine Faster

Machine Language Loops

int main()
{
int y = 0, i ;
for (i = 0;

y < 10; ++i)
y += i;

return y;
}

0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: c7 45 f8 00 00 00 00 movl $0x0,−0x8(%rbp)
b: c7 45 fc 00 00 00 00 movl $0x0,−0x4(%rbp)

12: eb 0a jmp 1e <main+0x1e>
14: 8b 45 fc mov −0x4(%rbp),%eax
17: 01 45 f8 add %eax,−0x8(%rbp)
1a: 83 45 fc 01 addl $0x1,−0x4(%rbp)
1e: 83 7d f8 09 cmpl $0x9,−0x8(%rbp)
22: 7e f0 jle 14 <main+0x14>
24: 8b 45 f8 mov −0x8(%rbp),%eax
27: c9 leaveq
28: c3 retq

Things to know:

• Condition Codes (Flags): Zero, Sign, Carry, etc.

• Call Stack: Stack frame, stack pointer, base pointer

• ABI: Calling conventions

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/Status_register
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Application_binary_interface

Web demo

http://assembly.ynh.io/

demo time

Software Closer to the machine Faster

http://assembly.ynh.io/

Other web-based assembly viewers

• http://assembly.ynh.io/

[https://github.com/ynh/cpp-to-assembly]

• http://gcc.godbolt.org/

• http://llvm.org/demo/

Software Closer to the machine Faster

http://assembly.ynh.io/
https://github.com/ynh/cpp-to-assembly
http://gcc.godbolt.org/
http://llvm.org/demo/

DIY demo

Assembly
comprehension/optimizer

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine
Machine Language
Memory

Making things go faster

Software Closer to the machine Faster

What is. . . a Memory Interface?

Memory Interface gets and stores binary
words in off-chip memory.

Smallest granularity: Bus width

Tells outside memory

• “where” through address bus

• “what” through data bus

Computer main memory is “Dynamic RAM”
(DRAM): Slow, but small and cheap.

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/Dynamic_random_access_memory

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.

Software Closer to the machine Faster

DRAM

Key: each cell is tiny → many of them!

Software Closer to the machine Faster

DRAM

Key: each cell is tiny → many of them!

Software Closer to the machine Faster

DRAM die

Samsung 1 Gib DDR3 die

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?

Software Closer to the machine Faster

We know how a computer works!

All of this can be built in about 4000 transistors.
(e.g. MOS 6502 in Apple II, Commodore 64, Atari 2600)

So what exactly is Intel doing with the other 623,996,000
transistors?

Answer:

Make things go faster!

Software Closer to the machine Faster

We know how a computer works!

All of this can be built in about 4000 transistors.
(e.g. MOS 6502 in Apple II, Commodore 64, Atari 2600)

So what exactly is Intel doing with the other 623,996,000
transistors?

Answer: Make things go faster!

Software Closer to the machine Faster

Go-fast widgets

All this go-faster technology: hard to see.

Most of the time:

• program fast,

• programmer happy.

Sometimes that’s not the case.

Goal now: Break each widget in an understandable way.

Software Closer to the machine Faster

Go-fast widgets

All this go-faster technology: hard to see.

Most of the time:

• program fast,

• programmer happy.

Sometimes that’s not the case.

Goal now: Break each widget in an understandable way.

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?

Software Closer to the machine Faster

Source of Slowness: Memory
Memory is slow.

Distinguish two different versions of “slow”:
• Bandwidth
• Latency

→ Memory has long latency, but can have large bandwidth.

Size of die vs. distance to memory: big!

Dynamic RAM: long intrinsic latency!

Idea:

Put a look-up table of
recently-used data onto
the chip.

→ “Cache”

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/CPU_cache

Source of Slowness: Memory
Memory is slow.

Distinguish two different versions of “slow”:
• Bandwidth
• Latency

→ Memory has long latency, but can have large bandwidth.

Size of die vs. distance to memory: big!

Dynamic RAM: long intrinsic latency!

Idea:

Put a look-up table of
recently-used data onto
the chip.

→ “Cache”

Software Closer to the machine Faster

http://en.wikipedia.org/wiki/CPU_cache

The Memory Hierarchy

Hierarchy of increasingly bigger, slower memories:

Registers

L1 Cache

L2 Cache

DRAM

Virtual Memory
(hard drive)

1 kB, 1 cycle

10 kB, 10 cycles

1 MB, 100 cycles

1 GB, 1000 cycles

1 TB, 1 M cycles

Second red/blue pebble game: played
by cache controller

What is a working set?

How might data locality factor into
this?

Software Closer to the machine Faster

The Memory Hierarchy

Hierarchy of increasingly bigger, slower memories:

Registers

L1 Cache

L2 Cache

DRAM

Virtual Memory
(hard drive)

1 kB, 1 cycle

10 kB, 10 cycles

1 MB, 100 cycles

1 GB, 1000 cycles

1 TB, 1 M cycles

Second red/blue pebble game: played
by cache controller

What is a working set?

How might data locality factor into
this?

Software Closer to the machine Faster

Cache: Actual Implementation

Demands on cache implementation:

• Fast, small, cheap, low power

• Fine-grained

• High “hit”-rate (few “misses”)

Main
Memory

Cache
Memory

Index Data
0 xyz
1 pdq
2 abc
3 rgf

Index Tag Data
0 abc2

0 xyz1

Problem:
Goals at odds with each other: Access matching logic expensive!

Solution 1: More data per unit of access matching logic
→ Larger “Cache Lines”

Solution 2: Simpler/less access matching logic
→ Less than full “Associativity”

Other choices: Eviction strategy, size

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster

CPUID

CPUID demo time

Software Closer to the machine Faster

Updating every kth integer

int go(unsigned count, unsigned stride)
{
const unsigned array size = 64 ∗ 1024 ∗ 1024;
int ∗ary = (int ∗) malloc(sizeof (int) ∗ array size);

for (unsigned it = 0; it < count; ++it)
{

for (unsigned i = 0; i < array size ; i += stride)
ary [i] ∗= 17;

}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i];

free (ary);
return result ;
}

Original benchmarks by Igor Ostrovsky

20 21 22 23 24 25 26 27 28 29 210

Stride

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
im

e
 [

s]

Software Closer to the machine Faster

Updating every kth integer

int go(unsigned count, unsigned stride)
{
const unsigned array size = 64 ∗ 1024 ∗ 1024;
int ∗ary = (int ∗) malloc(sizeof (int) ∗ array size);

for (unsigned it = 0; it < count; ++it)
{

for (unsigned i = 0; i < array size ; i += stride)
ary [i] ∗= 17;

}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i];

free (ary);
return result ;
}

Original benchmarks by Igor Ostrovsky

20 21 22 23 24 25 26 27 28 29 210

Stride

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
im

e
 [

s]

Software Closer to the machine Faster

Measuring bandwidths

int go(unsigned array size , unsigned steps)
{

int ∗ary = (int ∗) malloc(sizeof (int) ∗ array size);
unsigned asm1 = array size − 1;

for (unsigned i = 0; i < 100∗steps;)
{

#define ONE ary[(i++∗16) & asm1] ++;
#define FIVE ONE ONE ONE ONE ONE
#define TEN FIVE FIVE
#define FIFTY TEN TEN TEN TEN TEN
#define HUNDRED FIFTY FIFTY
HUNDRED
}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i];

free (ary);
return result ;
}

Original benchmarks by Igor Ostrovsky

212 214 216 218 220 222 224 226 228

Array Size [Bytes]

10-1

100

101

102

103

E
ff

.
B

a
n
d
w

id
th

 [
G

B
/s

]

Software Closer to the machine Faster

Measuring bandwidths

int go(unsigned array size , unsigned steps)
{

int ∗ary = (int ∗) malloc(sizeof (int) ∗ array size);
unsigned asm1 = array size − 1;

for (unsigned i = 0; i < 100∗steps;)
{

#define ONE ary[(i++∗16) & asm1] ++;
#define FIVE ONE ONE ONE ONE ONE
#define TEN FIVE FIVE
#define FIFTY TEN TEN TEN TEN TEN
#define HUNDRED FIFTY FIFTY
HUNDRED
}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i];

free (ary);
return result ;
}

Original benchmarks by Igor Ostrovsky

212 214 216 218 220 222 224 226 228

Array Size [Bytes]

10-1

100

101

102

103

E
ff

.
B

a
n
d
w

id
th

 [
G

B
/s

]

Software Closer to the machine Faster

Another mystery

int go(unsigned array size , unsigned stride , unsigned steps)
{
char ∗ary = (char ∗) malloc(sizeof (int) ∗ array size);

unsigned p = 0;
for (unsigned i = 0; i < steps; ++i)
{

ary [p] ++;
p += stride;
if (p >= array size)

p = 0;
}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i];

free (ary);
return result ;
}

Original benchmarks by Igor Ostrovsky

100 200 300 400 500 600
Stride [bytes]

5

10

15

20

A
rr

a
y
 S

iz
e
 [

M
B

]

Software Closer to the machine Faster

Another mystery

int go(unsigned array size , unsigned stride , unsigned steps)
{
char ∗ary = (char ∗) malloc(sizeof (int) ∗ array size);

unsigned p = 0;
for (unsigned i = 0; i < steps; ++i)
{

ary [p] ++;
p += stride;
if (p >= array size)

p = 0;
}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i];

free (ary);
return result ;
}

Original benchmarks by Igor Ostrovsky

100 200 300 400 500 600
Stride [bytes]

5

10

15

20
A

rr
a
y
 S

iz
e
 [

M
B

]

Software Closer to the machine Faster

Core Message

Learned a lot about caches.

Also learned:

Honest measurements are hard.

A good attempt:
http://www.bitmover.com/lmbench/

Instructions:
http://download.intel.com/design/intarch/papers/321074.pdf

Software Closer to the machine Faster

http://www.bitmover.com/lmbench/
http://download.intel.com/design/intarch/papers/321074.pdf

Programming for the Hierarchy

How can we rearrange programs to friendly to the memory
hierarchy?

Examples:

• Large vectors x , a, b
Compute

x ← x + 3a− 5b.

• Matrix-Matrix Multiplication

Software Closer to the machine Faster

Programming for the Hierarchy

How can we rearrange programs to friendly to the memory
hierarchy?

Examples:

• Large vectors x , a, b
Compute

x ← x + 3a− 5b.

• Matrix-Matrix Multiplication

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?

Software Closer to the machine Faster

Source of Slowness: Sequential Operation

IF Instruction fetch

ID Instruction Decode

EX Execution

MEM Memory Read/Write

WB Result Writeback

Software Closer to the machine Faster

Solution: Pipelining

Software Closer to the machine Faster

Pipelining

(MIPS, 110,000 transistors)

Software Closer to the machine Faster

Issues with Pipelines

Pipelines generally help
performance–but not always.

Possible issue: Dependencies. . .

• . . . on memory

• . . . on previous computation

• . . . on branch outcomes

“Solution”: Bubbling

Waiting
Instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
IP

E
LI

N
E

Completed
Instructions

0 1 2 3 4 5 6 7 8

Clock Cycle
9

For branches: could guess. . . ?

Software Closer to the machine Faster

Issues with Pipelines

Pipelines generally help
performance–but not always.

Possible issue: Dependencies. . .

• . . . on memory

• . . . on previous computation

• . . . on branch outcomes

“Solution”: Bubbling

Waiting
Instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
IP

E
LI

N
E

Completed
Instructions

0 1 2 3 4 5 6 7 8

Clock Cycle
9

For branches: could guess. . . ?

Software Closer to the machine Faster

Pipelines

Performance mystery demo
time

Software Closer to the machine Faster

Sandy Bridge Pipeline

David Kanter / Realworldtech.com

New concept:
Instruction-level
parallelism
(“Superscalar”)

Software Closer to the machine Faster

Sandy Bridge Pipeline

David Kanter / Realworldtech.com

New concept:
Instruction-level
parallelism
(“Superscalar”)

Software Closer to the machine Faster

Pipelines

More Pipeline Mysteries

Software Closer to the machine Faster

Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?

Software Closer to the machine Faster

Floating point

Floating point performance
demo

Software Closer to the machine Faster

Questions?

?

Software Closer to the machine Faster

Image Credits

• DRAM: Wikipedia
• DRAM die: chipworksrealchips.com / Samsung

• Basic cache: Wikipedia

• Cache associativity: based on Wikipedia

• Cache associativity vs miss rate: Wikipedia ,
• Cache Measurements: Igor Ostrovsky
• Pipelining: Wikipedia

• Bubbly Pipeline: Wikipedia

Software Closer to the machine Faster

	Tool of the day: Installing software
	Closer to the machine
	Machine Language
	Memory

	Making things go faster
	Overview
	The Memory Hierarchy
	Pipelines
	How about actually doing work?

