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Today

Tool of the day: Installing software

Closer to the machine

Making things go faster
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Bits and pieces

• HW4: tonight / early tomorrow

• HW6: due Saturday (ask for ext’n early)

• Last homework → project work after that

• Might issue problem sets for entertainment
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Software Installation

Demo time
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A Basic Processor

Internal Bus

Register File
Flags

Data ALU

Address ALU

Control Unit
PC

Memory Interface

Insn.
fetch

Data Bus

Address Bus

(loosely based on Intel 8086)

Bonus Question:
What’s a bus?
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A Very Simple Program

int a = 5;
int b = 17;
int z = a ∗ b;

4: c7 45 f4 05 00 00 00 movl $0x5,−0xc(%rbp)
b: c7 45 f8 11 00 00 00 movl $0x11,−0x8(%rbp)
12: 8b 45 f4 mov −0xc(%rbp),%eax
15: 0f af 45 f8 imul −0x8(%rbp),%eax
19: 89 45 fc mov %eax,−0x4(%rbp)
1c: 8b 45 fc mov −0x4(%rbp),%eax

Things to know:

• Addressing modes (Immediate, Register, Base plus Offset)

• 0xHexadecimal

• “AT&T Form”: (we’ll use this)
<opcode><size> <source>, <dest>
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Another Look
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A Very Simple Program: Intel Form

4: c7 45 f4 05 00 00 00 mov DWORD PTR [rbp−0xc],0x5
b: c7 45 f8 11 00 00 00 mov DWORD PTR [rbp−0x8],0x11
12: 8b 45 f4 mov eax,DWORD PTR [rbp−0xc]
15: 0f af 45 f8 imul eax,DWORD PTR [rbp−0x8]
19: 89 45 fc mov DWORD PTR [rbp−0x4],eax
1c: 8b 45 fc mov eax,DWORD PTR [rbp−0x4]

• “Intel Form”: (you might see this on the net)
<opcode> <sized dest>, <sized source>

• Goal: Reading comprehension.

• Don’t understand an opcode?
Google “<opcode> intel instruction”.
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Machine Language Loops

int main()
{
int y = 0, i ;
for ( i = 0;

y < 10; ++i)
y += i;

return y;
}

0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: c7 45 f8 00 00 00 00 movl $0x0,−0x8(%rbp)
b: c7 45 fc 00 00 00 00 movl $0x0,−0x4(%rbp)

12: eb 0a jmp 1e <main+0x1e>
14: 8b 45 fc mov −0x4(%rbp),%eax
17: 01 45 f8 add %eax,−0x8(%rbp)
1a: 83 45 fc 01 addl $0x1,−0x4(%rbp)
1e: 83 7d f8 09 cmpl $0x9,−0x8(%rbp)
22: 7e f0 jle 14 <main+0x14>
24: 8b 45 f8 mov −0x8(%rbp),%eax
27: c9 leaveq
28: c3 retq

Things to know:

• Condition Codes (Flags): Zero, Sign, Carry, etc.

• Call Stack: Stack frame, stack pointer, base pointer

• ABI: Calling conventions
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Web demo

http://assembly.ynh.io/

demo time
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Other web-based assembly viewers

• http://assembly.ynh.io/

[https://github.com/ynh/cpp-to-assembly]

• http://gcc.godbolt.org/

• http://llvm.org/demo/
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DIY demo

Assembly
comprehension/optimizer
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What is. . . a Memory Interface?

Memory Interface gets and stores binary
words in off-chip memory.

Smallest granularity: Bus width

Tells outside memory

• “where” through address bus

• “what” through data bus

Computer main memory is “Dynamic RAM”
(DRAM): Slow, but small and cheap.
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How does computer memory work?
One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.
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DRAM

Key: each cell is tiny → many of them!
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DRAM die

Samsung 1 Gib DDR3 die
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Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?
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We know how a computer works!

All of this can be built in about 4000 transistors.
(e.g. MOS 6502 in Apple II, Commodore 64, Atari 2600)

So what exactly is Intel doing with the other 623,996,000
transistors?

Answer:

Make things go faster!
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Go-fast widgets

All this go-faster technology: hard to see.

Most of the time:

• program fast,

• programmer happy.

Sometimes that’s not the case.

Goal now: Break each widget in an understandable way.
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Source of Slowness: Memory
Memory is slow.

Distinguish two different versions of “slow”:
• Bandwidth
• Latency

→ Memory has long latency, but can have large bandwidth.

Size of die vs. distance to memory: big!

Dynamic RAM: long intrinsic latency!

Idea:

Put a look-up table of
recently-used data onto
the chip.

→ “Cache”
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The Memory Hierarchy

Hierarchy of increasingly bigger, slower memories:

Registers

L1 Cache

L2 Cache

DRAM

Virtual Memory
(hard drive)

1 kB, 1 cycle

10 kB, 10 cycles

1 MB, 100 cycles

1 GB, 1000 cycles

1 TB, 1 M cycles

Second red/blue pebble game: played
by cache controller

What is a working set?

How might data locality factor into
this?
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Cache: Actual Implementation

Demands on cache implementation:

• Fast, small, cheap, low power

• Fine-grained

• High “hit”-rate (few “misses”)

Main
Memory

Cache
Memory

Index Data
0 xyz
1 pdq
2 abc
3 rgf

Index Tag Data
0 abc2

0 xyz1

Problem:
Goals at odds with each other: Access matching logic expensive!

Solution 1: More data per unit of access matching logic
→ Larger “Cache Lines”

Solution 2: Simpler/less access matching logic
→ Less than full “Associativity”

Other choices: Eviction strategy, size
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Cache: Associativity

Direct Mapped
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Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



Cache: Associativity

Direct Mapped

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

2-way set associative

Memory
0
1
2
3
4
5
6
...

Cache
0
1
2
3

1e-006

1e-005

0.0001

0.001

0.01

0.1

Inf1M256K64K16K4K1K

m
is

s 
ra

te

cache size

Direct

2-way

4-way

8-way

Full

Miss rate versus cache size on the Integer por-
tion of SPEC CPU2000 [Cantin, Hill 2003]

Software Closer to the machine Faster



CPUID

CPUID demo time
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Updating every kth integer

int go(unsigned count, unsigned stride )
{
const unsigned array size = 64 ∗ 1024 ∗ 1024;
int ∗ary = (int ∗) malloc( sizeof ( int ) ∗ array size );

for (unsigned it = 0; it < count; ++it)
{

for (unsigned i = 0; i < array size ; i += stride)
ary [ i ] ∗= 17;

}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i ];

free (ary );
return result ;
}

Original benchmarks by Igor Ostrovsky
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Measuring bandwidths

int go(unsigned array size , unsigned steps)
{

int ∗ary = (int ∗) malloc( sizeof ( int ) ∗ array size );
unsigned asm1 = array size − 1;

for (unsigned i = 0; i < 100∗steps;)
{

#define ONE ary[(i++∗16) & asm1] ++;
#define FIVE ONE ONE ONE ONE ONE
#define TEN FIVE FIVE
#define FIFTY TEN TEN TEN TEN TEN
#define HUNDRED FIFTY FIFTY
HUNDRED
}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i ];

free (ary );
return result ;
}

Original benchmarks by Igor Ostrovsky
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Another mystery

int go(unsigned array size , unsigned stride , unsigned steps)
{
char ∗ary = (char ∗) malloc( sizeof ( int ) ∗ array size );

unsigned p = 0;
for (unsigned i = 0; i < steps; ++i)
{

ary [p] ++;
p += stride;
if (p >= array size)

p = 0;
}

int result = 0;
for (unsigned i = 0; i < array size ; ++i)

result += ary[i ];

free (ary );
return result ;
}

Original benchmarks by Igor Ostrovsky
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Core Message

Learned a lot about caches.

Also learned:

Honest measurements are hard.

A good attempt:
http://www.bitmover.com/lmbench/

Instructions:
http://download.intel.com/design/intarch/papers/321074.pdf
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Programming for the Hierarchy

How can we rearrange programs to friendly to the memory
hierarchy?

Examples:

• Large vectors x , a, b
Compute

x ← x + 3a− 5b.

• Matrix-Matrix Multiplication
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Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?
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Source of Slowness: Sequential Operation

IF Instruction fetch

ID Instruction Decode

EX Execution

MEM Memory Read/Write

WB Result Writeback
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Solution: Pipelining
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Pipelining

(MIPS, 110,000 transistors)
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Issues with Pipelines

Pipelines generally help
performance–but not always.

Possible issue: Dependencies. . .

• . . . on memory

• . . . on previous computation

• . . . on branch outcomes

“Solution”: Bubbling

Waiting
Instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
IP

E
LI

N
E

Completed
Instructions

0 1 2 3 4 5 6 7 8

Clock Cycle
9

For branches: could guess. . . ?
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N
E

Completed
Instructions

0 1 2 3 4 5 6 7 8

Clock Cycle
9

For branches: could guess. . . ?
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Pipelines

Performance mystery demo
time
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Sandy Bridge Pipeline

David Kanter / Realworldtech.com

New concept:
Instruction-level
parallelism
(“Superscalar”)
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Sandy Bridge Pipeline

David Kanter / Realworldtech.com

New concept:
Instruction-level
parallelism
(“Superscalar”)
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Pipelines

More Pipeline Mysteries
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Outline

Tool of the day: Installing software

Closer to the machine

Making things go faster
Overview
The Memory Hierarchy
Pipelines
How about actually doing work?
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Floating point

Floating point performance
demo
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Questions?

?
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Image Credits

• DRAM: Wikipedia
• DRAM die: chipworksrealchips.com / Samsung

• Basic cache: Wikipedia

• Cache associativity: based on Wikipedia

• Cache associativity vs miss rate: Wikipedia ,
• Cache Measurements: Igor Ostrovsky
• Pipelining: Wikipedia

• Bubbly Pipeline: Wikipedia
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