High-Performance Scientific Computing Lecture 7: MPI Collectives, Intro to Performance

MATH-GA 2011 / CSCI-GA 2945 · October 17, 2012

Today

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics

Closer to the machine

Bits and pieces

- HW3: reports out
- HW5: due today
- HW6: out tomorrow
- Project Pitches

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics

Closer to the machine

Question

Problem: Debugging only deals with problems when they cause observable wrong behavior (e.g. a crash).

Doesn't find latent problems.

Suggested solution: *Monitor* program behavior (precisely) while it's executing. Possible?

What is Instrumentation?

What is Instrumentation?

A.k.a. how does Valgrind work?

Tools:

- Memcheck (find pointer bugs)
- Massif (find memory allocations)
- Cachegrind/Callgrind (find cache misbehavior)
- Helgrind/DRD (find data races)

Valgrind demo time

Outline

Tool of the day: Valgrind

MPI

Point-to-Point, Part II Collectives Leftovers

Understanding performance through asymptotics

Closer to the machine

Outline

Tool of the day: Valgrind

MPI

Point-to-Point, Part II

- Collectives
- Leftovers

Understanding performance through asymptotics

Closer to the machine

Ordering demo recap

MPI: Ordering

MPI 3.0, Section 3.5:

Order Messages are non-overtaking : If a sender sends two messages in succession to the same destination, and both match the same receive, then this operation cannot receive the second message if the first one is still pending.

If a receiver posts two receives in succession, and both match the same message, then the second receive operation cannot be satisfied by this message, if the first one is still pending.

MPI: Ordering

MPI 3.0, Section 3.5:

Order Messages are **non-overtaking**: If a sender sends two messages in succession to the same destination, and both match the same receive, then this operation cannot receive the second message if the first one is still pending.

If a receiver posts two receives in succession, and both match the same message, then the second receive operation cannot be satisfied by this message, if the first one is still pending.

MPI: More on Ordering

Possible problem?

```
if (rank == 0)
{
    MPI_Bsend(buf1, count, MPI_DOUBLE, 1, tag1, comm)
    MPI_Ssend(buf2, count, MPI_DOUBLE, 1, tag2, comm)
}
else if (rank == 1) then
{
    MPI_Recv(buf1, count, MPI_DOUBLE, 0, tag2, comm, status)
    MPI_Recv(buf2, count, MPI_DOUBLE, 0, tag1, comm, status)
}
```

MPI: Progress

MPI 3.0, Section 3.5:

Progress If a pair of matching send and receives have been initiated on two processes, then at least one of these two operations will complete, independently of other actions in the system:

- the send operation will complete, unless the receive is satisfied by another message, and completes;
- the receive operation will complete, unless the message sent is consumed by another matching receive that was posted at the same destination process.

Non-overtaking demo time

Outline

Tool of the day: Valgrind

MPI Point-to-Point, Part Collectives Leftovers

Understanding performance through asymptotics

Closer to the machine

Broadcast

Broadcast

Broadcast

Collectives demo time

Scatter

Scatter

Scatter

Gather

Gather

Gather

All-gather

All-gather

All-gather

Reduce

Reduce

from Marsha Berger/David Bindel/Bill Gropp

Reduce

from Marsha Berger/David Bindel/Bill Gropp
Reduce

from Marsha Berger/David Bindel/Bill Gropp

from Marsha Berger/David Bindel/Bill Gropp

from Marsha Berger/David Bindel/Bill Gropp

from Marsha Berger/David Bindel/Bill Gropp

Outline

Tool of the day: Valgrind

MPI

Point-to-Point, Part II Collectives Leftovers

Understanding performance through asymptotics

Closer to the machine

Communicators

Valgrind MPI Asymptotics Closer to the machine

Valgrind MPI Asymptotics Closer to the machine

Communicators

COMM_WORLD

Intra/inter-communicators: Great idea for **encapsulation**.

Ocean sim. doesn't need to know anything about atmosphere sim. (e.g not deadlocked by its communication)

MPI: More shiny features

- One-sided communication
- Parallel I/O
- Create more ranks at run-time
- "Virtual topologies"
- A zoo of tools

MPI Debuggers: TotalView

TotalView (Proprietary)

MPI Debuggers: DDT

Session Control Search	/iew <u>F</u>	lelp						
🕨 📕 📲 🚷 🥇	} {	} 🔮 📕	1		äl 🔻 🍯	•		
Current Group: User Defi 🖨 Focus on current: 💿 Group 🔿 Process 🔿 Thread 📋 Step Threads Together								
All	0	1 2 3	4 5	6 7	8	9 10	11 12	13 14 15
User Defined 1	0	L 2 3	4 5					
Create Group								
Project Files 💿		hello.c 💥						
Project Files Source Tree Source Tree Header Files Source Files Mole Image: Source Files Image: Source		801 for (x= 82 for (83 ta 84 MPI Ir 85 MPI Cc 86 MPI Cc 87 On this 88 All (0-1) User De Or this 89 Tor (x= 91 f(x= 92 dy 93 }	0;x<12;x y=0;y<12 bles[x][it(&arqc mm_rank(mm_size() line: ;) fined 1 (0-1 0;x<1000 namicArr	++) ;y++) y) = (x , &arqv MPI_COM MPI_COM 5) alloc v;x++) ay[x] =	*+1)*(y+); M_WORLD M_WORLD (sizeof * x%10;	-1); <u>, &my_ra</u> , &p); {(int)*10	ank);	
Allinea Distributed Debugging Tool (Proprietary)								

MPE/Jumpshot

MPE demo time

Parallel Zoo

Understanding Computational Cost

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics Work and Span Memory Cost Pebbles and I/O

Closer to the machine

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics Work and Span

Memory Cost Pebbles and I/O

Closer to the machine

$$B = f(A)$$

$$C = g(B)$$

$$E = f(C)$$

$$F = h(C)$$

$$G = g(E,F)$$

$$P = p(B)$$

$$Q = q(B)$$

$$R = r(G,P,Q)$$

B = f(A) C = g(B) E = f(C) F = h(C) G = g(E,F) P = p(B) Q = q(B)R = r(G,P,Q)

B = f(A) C = g(B) E = f(C) F = h(C) G = g(E,F) P = p(B) Q = q(B)R = r(G,P,Q)

 $\begin{array}{l} B \,=\, f(A) \\ C \,=\, g(B) \\ E \,=\, f(C) \\ F \,=\, h(C) \\ G \,=\, g(E,F) \\ P \,=\, p(B) \\ Q \,=\, q(B) \\ R \,=\, r(G,P,Q) \end{array}$

Thinking about Parallel Complexity

Let T_P be the time taken on P processors. Then;

- Work / "Work Complexity" T₁ Total number of operations necessary
- Span / "Step Complexity" T_{∞} Minimum number of steps taken if an infinite number of processors are available
- Parallelism T_1/T_{∞}

Average amount of work along span

Thinking about Parallel Complexity

Let T_P be the time taken on P processors. Then;

- Work / "Work Complexity" T₁ Total number of operations necessary
- Span / "Step Complexity" T_{∞} Minimum number of steps taken if an infinite number of processors are available
- Parallelism T_1/T_{∞}

Average amount of work along span

Does $P > T_1/T_\infty$ make sense?

Work/Span: Examples

Determine T_1 and T_∞ for:

• Adding two vectors of length n
- Adding two vectors of length n
- Matrix-vector multiplication $(n \times n)$

- Adding two vectors of length n
- Matrix-vector multiplication $(n \times n)$
- Summing a vector of length n

- Adding two vectors of length n
- Matrix-vector multiplication $(n \times n)$
- Summing a vector of length n
- Bubble sort

- Adding two vectors of length n
- Matrix-vector multiplication $(n \times n)$
- Summing a vector of length n
- Bubble sort Odd-even transposition sort

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics Work and Span Memory Cost Pebbles and I/O

Closer to the machine

Valgrind MPI Asymptotics Closer to the machine

Floating Point operations: $2N^3$

Floating Point operations: $2N^3$

Inherent data motions:

Floating Point operations: $2N^3$

Inherent data motions: $3N^2$

Floating Point operations: $2N^3$

Inherent data motions: $3N^2$

Inherent computational intensity:

$$\frac{\# \text{ flops}}{\# \text{ data motions}} = \frac{2N^3}{3N^2} \sim N$$

Floating Point operations: $2N^3$

Inherent data motions: $3N^2$

Inherent computational intensity:

$$\frac{\# \text{ flops}}{\# \text{ data motions}} = \frac{2N^3}{3N^2} \sim N$$

Achieved computational intensity (triple loops):

 $\frac{\# \text{ flops}}{\# \text{ data motions}} = \frac{2N^3}{2N^3 + O(N^2)} \sim 1$

Valgrind MPI Asymptotics Closer to the machine

Floating Point operations: $2N^3$

Inherent data motions: $3N^2$

Inherent computational intensity:

Achieved computational intensity (triple

Motion: Implies a notion of "close" and "far away".

What's "good"? High CI? Low CI?

Valgrind MPI Asymptotics Closer to the machine

Floating Point operations: $2N^3$

Inherent data motions: $3N^2$

Inherent computational intensity:

$$\frac{\# \text{ flops}}{\# \text{ data motions}} = \frac{2N^3}{3N^2} \sim N$$

Motion: Implies a notion of "close" and "far away" $\ensuremath{\mathbf{.}}$

What's "good"? High CI? Low CI?

"Moral CI": Unachievable. Why?

Floating Point operations: $2N^3$

Inherent data motions: $3N^2$

Inherent computational intensity:

Motion: Implies a notion of "close" and "far away".

What's "good"? High CI? Low CI?

"Moral CI": Unachievable. Why?

So, what to do?

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics Work and Span

Memory Cost Pebbles and I/O

Closer to the machine

Valgrind MPI Asymptotics Closer to the machine

How much memory do we need to evaluate this DAG?

How much memory do we need to evaluate this DAG?

How much memory do we need to evaluate this DAG?

How much memory do we need to evaluate this DAG?

How many 'memory cells' needed?

How much memory do we need to evaluate this DAG?

How many 'memory cells' needed? 6

How much memory do we need to evaluate this DAG?

How many 'memory cells' needed? 6

What if nodes were repeatable?

How much memory do we need to evaluate this DAG?

How many 'memory cells' needed? 6

```
What if nodes were repeatable?
```

(Interesting, but not now.)

How much memory do we need to evaluate this DAG?

How many 'memory cells' needed? 6

```
What if nodes were repeatable?
```

(Interesting, but not now.)

What if we only had 4 cells near the processor?

Modeling local/close memory

Rules, each with unit cost:

Compute If all inputs of a pebble are red, color the pebble red. Delete Remove a pebble from the board. Evict Turn a red pebble into a blue pebble. Bring close Turn a blue pebble into a red pebble.

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

How long does it take to evaluate this DAG with only 4 'red pebbles' ('close' memory cells)?

Red/Blue Pebbles: Theory

Examples of theoretical results from [Hong, Kung '81]:

Matrix-vector Multiplication:

Min I/O time
$$\sim \frac{n^2}{\# \text{ close cells}}$$

Matrix-matrix Multiplication:

Min I/O time
$$\sim rac{n^3}{\sqrt{\#} ext{ close cells}}$$

Red/Blue Pebbles: Theory

Fast Fourier Transform:

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics

Closer to the machine The Basic Subsystems Machine Language

Taking a step back

Want to answer:

How fast does a computer execute my code?

Need to answer first:

How does a computer execute my code?

Valgrind MPI Asymptotics Closer to the machine

Expansion Slots

PCI-Express (x4, x16, x1, x16) and regular PCI

PCIe V2, x16 Bandwidth: \sim 6 GB/s

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics

Closer to the machine The Basic Subsystems Machine Language

A Basic Processor

A Basic Processor

How all of this fits together

Everything synchronizes to the Clock.

Control Unit ("CU"): The brains of the operation. Everything connects to it.

Bus entries/exits are *gated* and (potentially) *buffered*.

CU controls gates, tells other units about 'what' and 'how':

- What operation?
- Which register?
- Which addressing mode?

What is...an ALU?

Arithmetic Logic Unit One or two operands A, B Operation selector (Op):

- (Integer) Addition, Subtraction
- (Logical) And, Or, Not
- (Bitwise) Shifts (equivalent to multiplication by power of two)
- (Integer) Multiplication, Division

Specialized ALUs:

- Floating Point Unit (FPU)
- Address ALU

Operates on <u>binary representations</u> of numbers. Negative numbers represented by two's complement.

What is... a Register File?

Registers are On-Chip Memory

- Directly usable as operands in Machine Language
- Often "general-purpose"
- Sometimes special-purpose: Floating point, Indexing, Accumulator
- Small: x86_64: 16×64 bit GPRs
- Very fast (near-zero latency)

%r0
%r1
%r2
%r3
%r4
%r5
%r6
%r7

What is... a Register File?

Registers are On-Chip Memory

- Directly usable as operands in Machine Language
- Often "general-purpose"
- Sometimes special-purpose: Floating point, Indexing, Accumulator
- Small: x86_64: 16×64 bit GPRs
- Very fast (near-zero latency)

First red/blue pebble game, played by compiler.

Outline

Tool of the day: Valgrind

MPI

Understanding performance through asymptotics

Closer to the machine The Basic Subsystem Machine Language

A Very Simple Program

	4:	c7 45 f4 05 00 0	0 00 movl	\$0x5,-0xc(%rbp)
int $a = 5;$	b:	c7 45 f8 11 00 0	0 00 movl	\$0x11,-0x8(%rbp)
	12:	8b 45 f4	mov	-0xc(%rbp),%eax
$\lim_{n \to \infty} \mathbf{D} = 1 1;$	15:	Of af 45 f8	imul	-0x8(%rbp),%eax
$\mathbf{int} \ \mathbf{z} = \mathbf{a} * \mathbf{b};$	19:	89 45 fc	mov	%eax, -0x4(%rbp)
	1c:	8b 45 fc	mov	-0x4(%rbp),%eax

Things to know:

- Addressing modes (Immediate, Register, Base plus Offset)
- <u>0xHexadecimal</u>
- "AT&T Form": (we'll use this)
 <opcode><size> <source>, <dest>

Another Look

A Very Simple Program: Intel Form

4:	c7 45 f4 05 00 00 00	mov	DWORD PTR [rbp-0xc],0x5
b:	c7 45 f8 11 00 00 00	mov	DWORD PTR [rbp-0x8],0x11
12:	8b 45 f4	mov	eax,DWORD PTR [rbp-0×c]
15:	Of af 45 f8	imul	eax,DWORD PTR [rbp-0x8]
19:	89 45 fc	mov	DWORD PTR [rbp-0x4],eax
1c:	8b 45 fc	mov	eax,DWORD PTR [rbp-0×4]

- "Intel Form": (you might see this on the net)
 <opcode> <sized dest>, <sized source>
- Goal: Reading comprehension.
- Don't understand an opcode? Google "<opcode> intel instruction".

Questions?

?

Image Credits

- Valgrind logo: Julian Seward
- Mainboard: Wikimedia Commons 💬
- PCI Express slots: Wikimedia Commons co
- DIMM: sxc.hu/gobran11
- Sandy bridge bottom: Wikimedia Commons co
- Sandy bridge die: Intel Corp.
- GTX 480: Nvidia Corp. ⓒ