
High-Performance Scientific Computing
Lecture 4: OpenCL

MATH-GA 2011 / CSCI-GA 2945 · September 26, 2012

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Today

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Bits and pieces

• HW1 graded before weekend

• HW2 due

• HW3 out

• Sign up for HPC account

• Any more OMP questions?

• OMP anecdote

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Final project

Examples from two years ago:

• GPU-parallel finite difference solver in flexible geometries

• GPU-parallel password cracking

• MPI-parallel CFD via the vortex method

• GPU-parallel ruling extraction (geometry)

Remarks:

• Group projects encouraged!

• Use the mailing list to find buddies

• Non-numerical algorithms ok

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Outline

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Make

Demo time

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Outline

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)

13

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Slimming down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

14

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Two cores (two fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

15

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

. . . again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Four cores (four fragments in parallel)

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

16

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17

Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

16 cores = 16 simultaneous instruction streams
17

Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Recall: simple processing core

Fetch/
Decode

ALU
(Execute)

Execution
Context

19

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Add ALUs

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processing Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

20

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

24
Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

26

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

27

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

Not all ALUs do useful work!
Worst case: 1/8 performance

28

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But what about branches?

ALU 1 ALU 2 . . . ALU 8 . . .
Time

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional
shader code>

<resume unconditional
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;

x = 0;

refl = Ka;

T T T F F F F F

29

Credit: Kayvon Fatahalian (Stanford)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Recent Processor Architecture

• Commodity chips

• “Infinitely” many cores

• “Infinite” vector width

• Must hide memory latency
(→ ILP, SMT)

• Compute bandwidth
� Memory bandwidth

• Bandwidth only achievable
by homogeneity

Nv GT200
(2008)

Nv Fermi
(2010)

Intel IVB
(2012)

AMD Tahiti
(2012)

Nv GK110
(2012?)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Outline

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

• Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

• Vendor-neutral

• Comes with ‘JIT’ compilation

Defines:

• Host-side programming interface (library)

• Device-side programming language (!)

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory
Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory
Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Vocabulary

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

C “Runtime”

Device Language: ∼ C99

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL Object Diagram

Last Revision Date: 9/30/10 Page 20

Figure 2.1 - OpenCL UML Class Diagram

Credit: Khronos Group

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware

Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

(Work) Group

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

Grid

(Kernel:
Func-

tion on Grid)

(Work) Group

(Work) Item

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

• get local id(axis)?/size(axis)?

• get group id(axis)?/num groups(axis)?

• get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

• Program as if there were
“infinitely” many cores

• Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

• Parallel program → sequential hardware

or

• Sequential program → parallel hardware?

Axis 0
A

xi
s

1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

X,Y,Z order within group matters. (Not
among groups, though.)

• get local id(axis)?/size(axis)?

• get group id(axis)?/num groups(axis)?

• get global id(axis)?/size(axis)?

axis=0,1,2,...

Grids can be 1,2,3-dimensional.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Dive into OpenCL: Preparation

Demo time

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Outline

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL: Command Queues

• Host and Device run
asynchronously

• Host submits to queue:
• Computations
• Memory Transfers
• Sync primitives
• . . .

• Host can wait for
drained queue

• Profiling

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Outline

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

OpenCL Device Language

OpenCL device language is C99, with these
differences:

+ Index getters
+ Memory space qualifiers
+ Vector data types
+ Many generic (‘overloaded’) math functions
+ Synchronization
- Recursion
- Fine-grained malloc()
- Function pointers

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Address Space Qualifiers

Type Per “Speed”
private*) work item super-fast
local group fast
global grid kinda slow

*) default, so optional

Should really discuss “speed” in terms
of latency/bandwidth.

Both decrease with distance from the
point of execution.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Address Space Qualifiers

Type Per “Speed”
private*) work item super-fast
local group fast
global grid kinda slow

*) default, so optional

Should really discuss “speed” in terms
of latency/bandwidth.

Both decrease with distance from the
point of execution.

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Outline

Tool of the day: Make

Chips for Throughput

OpenCL: Overview

OpenCL: Between host and device

OpenCL: Device Language

OpenCL: Synchronization

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

• Intra-group:
barrier(...),
mem fence(...)

... =
CLK {LOCAL,GLOBAL} MEM FENCE

• Inter-group:
Kernel launch

• CPU-GPU:
Command queues, Events

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

• Intra-group:
barrier(...),
mem fence(...)

... =
CLK {LOCAL,GLOBAL} MEM FENCE

• Inter-group:
Kernel launch

• CPU-GPU:
Command queues, Events

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Barrier?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

17

write 18
read

17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

17

write 18

read
17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

17

write 18
read

17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

17

write 18
read

17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

17

write 18

read
17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

18

write 18

read
17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence?

18

write 18
read

17

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

17

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read

18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization

What is a Memory Fence? An ordering restriction for memory
access.

18

write 18

read
18

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization between Groups

Golden Rule:
Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

• Work groups may read the same information from global
memory.

• But: Two work groups may not validly write different things
to the same global memory.

• Kernel launch serves as
• Global barrier
• Global memory fence

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Synchronization between Groups

Golden Rule:
Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

• Work groups may read the same information from global
memory.

• But: Two work groups may not validly write different things
to the same global memory.

• Kernel launch serves as
• Global barrier
• Global memory fence

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible!

Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected

Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic: Compare-and-swap

int atomic cmpxchg (global int ∗p, int cmp, int val)
int atomic cmpxchg (local int ∗p, int cmp, int val)

Does:

• Read the 32-bit value (referred to as old) stored at location
pointed by p.

• Compute (old == cmp) ? val : old.

• Store result at location pointed by p.

• Returns old.

Implement atomic float add?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Atomic: Compare-and-swap

int atomic cmpxchg (global int ∗p, int cmp, int val)
int atomic cmpxchg (local int ∗p, int cmp, int val)

Does:

• Read the 32-bit value (referred to as old) stored at location
pointed by p.

• Compute (old == cmp) ? val : old.

• Store result at location pointed by p.

• Returns old.

Implement atomic float add?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Questions?

?

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

Image Credits

• Isaiah die shot: VIA Technologies
• Onions: flickr.com/darwinbell

Tool of the day: Make Chips for Throughput OpenCL: Overview OpenCL: Between host and device OpenCL: Device Language OpenCL: Synchronization

	Tool of the day: Make
	Chips for Throughput
	OpenCL: Overview
	OpenCL: Between host and device
	OpenCL: Device Language
	OpenCL: Synchronization

