High-Performance Scientific Computing Lecture 13: Parallel Patterns

MATH-GA 2011 / CSCI-GA 2945 • December 5, 2012

Today

Tool of the day: 3D Visualization

Parallel Patterns

Bits and pieces

- HW6: soon
- Dec 12: No class-good luck on finals!
- Dec 17 ?/18?/19: Project presentations
- Will announce precise date, watch email
- Project guidelines posted
- Need help with project? Ask/come see us!
- Class evaluations

Outline

Tool of the day: 3D Visualization

Parallel Patterns

3D vis demo time

Visualization demo

Software links:

- libsilo (LLNL "WCI", BSD license)
- Vislt (LLNL "WCI", BSD license)

Alternative:

- Paraview (KitWare/LANL, BSD license)
- TecPlot (\$\$\$)

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Partition

$$
y_{i}=f_{i}\left(x_{i-1}, x_{i}, x_{i+1}\right)
$$

where $i \in\{1, \ldots, N\}$.

Partition

$$
y_{i}=f_{i}\left(x_{i-1}, x_{i}, x_{i+1}\right)
$$

where $i \in\{1, \ldots, N\}$.
Includes straightforward generalizations to dependencies on a larger (but not $O(P)$-sized!) set of neighbor inputs.

Partition

$$
y_{i}=f_{i}\left(x_{i-1}, x_{i}, x_{i+1}\right)
$$

where $i \in\{1, \ldots, N\}$.
Includes straightforward generalizations to dependencies on a larger (but not $O(P)$-sized!) set of neighbor inputs.

Point: Processor i owns x_{i}. ("owns" $=$ is "responsible for updating")

Partition: Graph

Mapping to Mechanisms

- OpenMP?

Mapping to Mechanisms

- OpenMP?
- MPI?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?
- GPU?

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{aligned}
& u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
&\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{aligned}
$$

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{aligned}
& u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
&\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{aligned}
$$

- Sequential

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{aligned}
& u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
&\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{aligned}
$$

- Sequential
- OpenMP?

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{gathered}
u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{gathered}
$$

- Sequential
- OpenMP?
- MPI?

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{gathered}
u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{gathered}
$$

- Sequential
- OpenMP?
- MPI?
- GPU - 2D?

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{gathered}
u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{gathered}
$$

- Sequential
- OpenMP?
- MPI?
- GPU - 2D?
- GPU - 3D?

Mapping to Mechanisms: Stencils

Common example (" 5 -point stencil"):

$$
\begin{gathered}
u_{i, j}^{n+1}=\frac{1}{h^{2}}\left(-4 u_{i, j}^{n}+u_{i-1, j}^{n}+u_{i+1, j}^{n}\right. \\
\left.+u_{i, j-1}^{n}+u_{i, j+1}^{n}\right)
\end{gathered}
$$

- Sequential
- OpenMP?
- MPI?
- GPU - 2D?
- GPU - 3D?

What if there's geometry?

Partition: Issues

- Same computation often repeated many times
- As time steps in a simulation
- Until 'convergence'
- \rightarrow Synchronization?
- Main structures: Array (image, grid), Graph (mesh)
- Performance impact of partition?
- Granularity?
- Only useful when the computation is mainly local
- Load Balancing: Thorny issue (next)

Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_{i}, p_{j} need to
 communicate.
- How can p_{i} find p_{j} (and vice versa)?

Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_{i}, p_{j} need to
 communicate.
- How can p_{i} find p_{j} (and vice versa)?
Communicate via a third party, $p_{f(i, j)}$.

For f : think 'hash function'.

Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_{i}, p_{j} need to communicate.
- How can p_{i} find p_{j} (and vice versa)?
Communicate via a third party, $p_{f(i, j)}$.
For f : think 'hash function'.

Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_{i}, p_{j} need to communicate.
- How can p_{i} find p_{j} (and vice versa)?
Communicate via a third party, $p_{f(i, j)}$.

For f : think 'hash function'.

Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_{i}, p_{j} need to
 communicate.
- How can p_{i} find p_{j} (and vice versa)?
Communicate via a third party, $p_{f(i, j)}$.

For f : think 'hash function'.

Rendezvous Trick

- Assume an irregular partition.
- Assume problem components i, j on unknown partitions p_{i}, p_{j} need to communicate.
- How can p_{i} find p_{j} (and vice versa)?
Communicate via a third party, $p_{f(i, j)}$.

For f : think 'hash function'.

Partitioning for neighbor communication

Example

E. Boman, K. Devine (Sandia)

Example

E. Boman, K. Devine (Sandia)

Example

E. Boman, K. Devine (Sandia)

A simple strategy

Recursive Coordinate Bisection ('RCB') [Berger, Bokhari '87]

\oplus Simple
© Easy to update for changed geometry ('incremental')
© Easy to fool

```
E. Boman, K. Devine (Sandia)
```


Space-filling curves

Space-filling curves

Easily obtained by bit interleaving!

Wikipedia

Space-filling curves

Carlo H. Sequin, UC Berkeley / Wikipedia

Space-filling curves

\oplus Simple, even for adaptive meshes
(4) Weight-able
(4) Cache-happy
\oplus Easy to update for changed geometry ('incremental')
© Communication volume?
M. Berger

Space-filling curves: Examples

M. Berger, M. Aftosmis

Space-filling curves: Examples

M. Berger, M. Aftosmis

Partitioning: Objectives

Main goals:

- Even distribution of work
- Minimize neighbor communication

Criteria:

- Cheap! (General problem: NP-complete)
- Incremental
- Partitioning itself is parallel

Partitioning: Objectives

Main goals:

- Even distribution of work
- Minimize neighbor communication

Criteria:

- Cheap! (General problem: NP-complete)
- Incremental
- Partitioning itself is parallel

What if we don't have geometry/coordinates?

Chopping up the communication graph

K. Schloegel, G. Karypis, V. Kumar '00

Chopping up the communication graph

Great model? How often do we send vertex 1 to B ?

Chopping up the communication graph

Great model? How often do we send vertex 1 to B ?

Perhaps: assign weight to vertices, edges

Partitioning

Spectral partitioning demo

Partitioning

Metis demo

Finer points

- What if $\#$ inputs $\neq \#$ outputs?
- Might want to balance multiple objectives
- Types of work
- Types of communication

Software packages to look for:

- Zoltan (free, LGPL)
- PT-Scotch (free, copyleft)
- Metis (free to use, proprietary, some source available)

Finer points

- What if \# inputs $\neq \#$ outputs? (\rightarrow hypergraphs)
- Might want to balance multiple objectives
- Types of work
- Types of communication

Software packages to look for:

- Zoltan (free, LGPL)
- PT-Scotch (free, copyleft)
- Metis (free to use, proprietary, some source available)

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Pipelined Computation

$$
\begin{aligned}
y & =f_{N}\left(\cdots f_{2}\left(f_{1}(x)\right) \cdots\right) \\
& =\left(f_{N} \circ \cdots \circ f_{1}\right)(x)
\end{aligned}
$$

where N is fixed.

Pipelined Computation: Graph

Pipelined Computation: Graph

Processor Assignment?

Pipelined Computation: Examples

- Image processing
- Any multi-stage algorithm
- Pre/post-processing or I/O
- Out-of-Core algorithms

Specific simple examples:

- Sorting (insertion sort)
- Triangular linear system solve ('backsubstitution')

- Key: Pass on values as soon as they're available
(will see more efficient algorithms for both later)

Pipelined Computation: Issues

- Non-optimal while pipeline fills or empties
- Often communication-inefficient
- for large data
- Needs some attention to synchronization, deadlock avoidance
- Can accommodate some asynchrony
But don't want:
- Pile-up
- Starvation

Mapping to Mechanisms

- OpenMP?

Mapping to Mechanisms

- OpenMP?
- MPI?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?
- GPU?

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Reduction

$$
y=f\left(\cdots f\left(f\left(x_{1}, x_{2}\right), x_{3}\right), \ldots, x_{N}\right)
$$

where N is the input size.

Reduction

$$
y=f\left(\cdots f\left(f\left(x_{1}, x_{2}\right), x_{3}\right), \ldots, x_{N}\right)
$$

where N is the input size.
Also known as...

- Lisp/Python function reduce (Scheme: fold)
- C++ STL std: :accumulate

Reduction: Graph

Reduction: Graph

Painful! Not parallelizable.

Approach to Reduction

Can we do better?
"Tree" very imbalanced. What property of f would allow 'rebalancing'?

Approach to Reduction

Can we do better?
"Tree" very imbalanced. What property of f would allow 'rebalancing'?

$$
f(f(x, y), z)=f(x, f(y, z))
$$

Looks less improbable if we let $x \circ y=f(x, y)$:

$$
x \circ(y \circ z))=(x \circ y) \circ z
$$

Has a very familiar name: Associativity

Reduction: A Better Graph

Reduction: A Better Graph

Processor allocation?

Mapping to Mechanisms

- Single threads?

Mapping to Mechanisms

- Single threads?
- OpenMP?

Mapping to Mechanisms

- Single threads?
- OpenMP?
- MPI?

Mapping to Mechanisms

- Single threads?
- OpenMP?
- MPI?
- MPI: Larger than \# ranks?

Mapping to Mechanisms

- Single threads?
- OpenMP?
- MPI?
- MPI: Larger than \# ranks?
- GPU?

Mapping Reduction to the GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
- Need to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.

Mapping Reduction to the GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
- Need to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.
- Solution: Use a two-scale algorithm.

In particular: Use multiple grid invocations to achieve inter-workgroup synchronization.

With material by M. Harris (Nvidia Corp.)

Kernel V1

```
__kernel void reduce0( _-global T *g_idata, __global T *g_odata,
    unsigned int n, __local T* Idata)
    unsigned int lid = get_local_id (0);
    unsigned int i = get_global_id (0);
    Idata[lid] = (i < n) ? g_idata [i] : 0;
    barrier (CLK_LOCAL_MEM_FENCE);
    for(unsigned int s=1; s < get_local_size (0); s *= 2)
    {
        if (( lid % (2*s)) == 0)
        Idata[lid ] += Idata[lid + s];
    barrier (CLK_LOCAL_MEM_FENCE);
    }
    if (lid == 0) g_odata[get_group_id(0)] = Idata [0];
}
```


Interleaved Addressing

With material by M. Harris (Nvidia Corp.)

Interleaved Addressing

Issue: Slow modulo, Divergence

Kernel V2

```
__kernel void reduce2( _-global T *g_idata, __global T *g_odata,
    unsigned int n, __local T* Idata)
    unsigned int lid = get_local_id (0);
    unsigned int i = get_global_id (0);
    Idata [lid] = (i < n) ? g_idata [i] : 0;
    barrier (CLK_LOCAL_MEM_FENCE);
    for(unsigned int s= get_local_size (0)/2; s>0; s>>=1)
    {
        if (lid < s)
        Idata[lid ] += Idata[lid + s];
        barrier (CLK_LOCAL_MEM_FENCE);
    }
    if (lid == 0) g_odata[ get_local_size (0)] = Idata [0];
}
```


Sequential Addressing

With material by M. Harris (Nvidia Corp.)

Sequential Addressing

Better! But still not "efficient".
Only half of all work items after first round, then a quarter, ...

With material by M. Harris (Nvidia Corp.)

Recap: Parallel Complexity

Distinguish:

- Time on T processors: T_{P}
- Step Complexity/Span T_{∞} : Minimum number of steps taken if an infinite number of processors are available
- Work per step S_{t}
- Work Complexity/Work $T_{1}=\sum_{t=1}^{T_{\infty}} S_{t}$: Total number of operations performed
- Parallelism T_{1} / T_{∞} : average amount of work along span
- $P>T_{1} / T_{\infty}$ doesn't make sense.

Algorithm-specific!

Parallel Complexity for Reduction

Number of Items N
Actual work to be done: $W=O(N)$ additions.
Step Complexity: Let $d=\left\lceil\log _{2} N\right\rceil$. Then $T_{\infty}=d, S_{t}=O\left(2^{d-t}\right)$.
Work Complexity:

$$
T_{1}=\sum_{t=1}^{T} S_{t}=O\left(\sum_{t=1}^{T} 2^{d-t}\right)=O\left(2^{d}\right)=O(N)
$$

Parallel Complexity for Reduction

Number of Items N
Actual work to be done: $W=O(N)$ additions.
Step Complexity: Let $d=\left\lceil\log _{2} N\right\rceil$. Then $T_{\infty}=d, S_{t}=O\left(2^{d-t}\right)$.
Work Complexity:

$$
T_{1}=\sum_{t=1}^{T} S_{t}=O\left(\sum_{t=1}^{T} 2^{d-t}\right)=O\left(2^{d}\right)=O(N)
$$

"Work-efficient:" $T_{1} \sim W$.

Greedy Scheduling

Theorem (Graham '68, Brent '75)
A parallel algorithm with span T_{∞} and work complexity T_{1} can be executed on a shared-memory machine with P processors in no more than

$$
T_{P} \leq \frac{T_{1}}{P}+T_{\infty}
$$

steps.

Observations:

- Think of T_{∞} as the length of the "critical path".
- The first summand can be made to go away by increasing P.
- Only valid for shared-memory.

Greedy Scheduling

Theorem (Graham '68, Brent '75)

A parallel algorithm with span T_{∞} and work complexity T_{1} can be executed on a shared-memory machine with P processors in no more than

$$
T_{P} \leq \frac{T_{1}}{P}+T_{\infty}
$$

steps.

Observations:

- Think of T_{∞} as the leng
- The first summand can
- Only valid for shared-me

Estimate for $P=1$?
Proof sketch?

What about reduction?
What is P for a GPU?

Kernel V3 Part 1

__kernel void reduce6(_-global T *g_idata, __global T *g_odata, unsigned int n , volatile __local $\mathrm{T} *$ Idata)
\{

```
unsigned int lid = get_local_id (0);
unsigned int i = get_group_id(0)*(
    get_local_size (0)*2) + get_local_id (0);
unsigned int gridSize = GROUP_SIZE*2*get_num_groups(0);
    Idata [ lid ] = 0;
while (i<n)
{
        Idata[lid ] += g_idata[i];
        if (i + GROUP_SIZE < n)
            Idata[lid ] += g_idata[i+GROUP_SIZE];
        i += gridSize;
    }
    barrier (CLK_LOCAL_MEM_FENCE);
```


Kernel V3 Part 2

```
if (GROUP_SIZE >= 512)
{
    if (lid < 256) { Idata[ lid] += Idata[lid + 256]; }
    barrier (CLK_LOCAL_MEM_FENCE);
}
// ...
if (GROUP_SIZE >= 128)
{ /* ... */}
if (lid < 32)
{
    if (GROUP_SIZE >= 64) { Idata[lid] += Idata[lid + 32]; }
    if (GROUP_SIZE >= 32) { Idata[lid] += Idata[lid + 16]; }
    if (GROUP_SIZE >= 2) { Idata[lid] += Idata[lid + 1]; }
}
if (lid == 0) g_odata[get_group_id (0)] = Idata [0];
```


Performance Comparison

With material by M. Harris (Nvidia Corp.)

Reduction: Examples

- Sum, Inner Product, Norm
- Occurs in iterative methods
- Minimum, Maximum
- Data Analysis
- Evaluation of Monte Carlo Simulations
- List Concatenation, Set Union

- Matrix-Vector product (but...)

Reduction: Issues

- When adding: floating point cancellation?
- Serial order goes faster: can use registers for intermediate results
- Requires availability of neutral element
- GPU-Reduce: Optimization sensitive to data type

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions

Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Map-Reduce

Sounds like this:

$$
\begin{array}{r}
y=f\left(\cdots f \left(f\left(g\left(x_{1}\right), g\left(x_{2}\right)\right),\right.\right. \\
\left.\left.g\left(x_{3}\right)\right), \ldots, g\left(x_{N}\right)\right)
\end{array}
$$

where N is the input size.

- Lisp naming, again
- Mild generalization of reduction

Map-Reduce

But no. Not even close.

Sounds like this:

$$
\begin{array}{r}
y=f\left(\cdots f \left(f\left(g\left(x_{1}\right), g\left(x_{2}\right)\right),\right.\right. \\
\left.\left.g\left(x_{3}\right)\right), \ldots, g\left(x_{N}\right)\right)
\end{array}
$$

where N is the input size.

- Lisp naming, again
- Mild generalization of reduction

Map-Reduce: Graph

MapReduce: Discussion

MapReduce \geq map + reduce:

- Used by Google (and many others) for large-scale data processing
- Map generates (key, value) pairs
- Reduce operates only on pairs with identical keys
- Remaining output sorted by key
- Represent all data as character strings
- User must convert to/from internal repr.
- Messy implementation
- Parallelization, fault tolerance, monitoring, data management, load balance, re-run "stragglers", data locality
- Works for Internet-size data
- Simple to use even for inexperienced users

MapReduce: Examples

- String search
- (e.g. URL) Hit count from Log
- Reverse web-link graph
- desired: (target URL, sources)
- Sort
- Indexing
- desired: (word, document IDs)
- Machine Learning, Clustering, ...

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Scan

$$
\begin{aligned}
y_{1} & =x_{1} \\
y_{2} & =f\left(y_{1}, x_{2}\right) \\
\vdots & =: \\
y_{N} & =f\left(y_{N-1}, x_{N}\right)
\end{aligned}
$$

where N is the input size. (Think: N large, $f(x, y)=x+y$)

- Prefix Sum/Cumulative Sum
- Abstract view of: loop-carried dependence
- Also possible: Segmented Scan

Scan: Graph

Scan: Granh

Scan: Granh

Scan: Implementation

Scan: Implementation

Work-efficient?

Scan: Implementation II

Two sweeps: Upward, downward, both tree-shape

On upward sweep:

- Get values L and R from left and right child

- Save L in local variable Mine
- Compute Tmp $=\mathrm{L}+\mathrm{R}$ and pass to parent On downward sweep:
- Get value Tmp from parent

- Send Tmp to left child
- Sent Tmp+Mine to right child

Scan: Implementation II

Two sweeps: Upward, downward, both tree-shape

On upward sweep:

- Get values L and R from left and right child

- Save L in local variable Mine
- Compute Tmp $=\mathrm{L}+\mathrm{R}$ and pass to parent On downward sweep:
- Get value Tmp from parent

- Send Tmp to left chi
- Sent Tmp+Mine to \quad Work-efficient?

Span rel. to first attempt?

Scan: Examples

- Anything with a loop-carried dependence
- One row of Gauss-Seidel
- One row of triangular solve
- Segment numbering if boundaries are known
- Low-level building block for many higher-level algorithms algorithms
- FIR/IIR Filtering
- G.E. Blelloch:

Prefix Sums and their Applications

Scan: Issues

- Subtlety: Inclusive/Exclusive Scan
- Pattern sometimes hard to recognize
- But shows up surprisingly often
- Need to prove associativity/commutativity
- Useful in Implementation: algorithm cascading
- Do sequential scan on parts, then parallelize at coarser granularities

Mapping to Mechanisms

- OpenMP?

Mapping to Mechanisms

- OpenMP?
- MPI?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?
- GPU?

Challenge

Sort (fixed-size) integers using
 scan

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

Divide and Conquer

Divide and Conquer

Divide and Conquer: Examples

- GEMM, TRMM, TRSM, GETRF (LU)
- FFT
- Sorting: Bucket sort, Merge sort
- N-Body problems (Barnes-Hut, FMM)
- Adaptive Integration

More fun with work and span:
D\&C analysis lecture

D\&

Mapping to Mechanisms

- OpenMP?

Mapping to Mechanisms

- OpenMP?
- MPI?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?
- GPU?

Divide and Conquer: Issues

- "No idea how to parallelize that"
- \rightarrow Try D\&C
- Non-optimal during partition, merge
- But: Does not matter if deep levels do heavy enough processing
- Subtle to map to fixed-width machines (e.g. GPUs)
- Varying data size along tree \rightarrow Scan!
- Bookkeeping nontrivial for non- 2^{n} sizes
- Side benefit: D\&C is generally cache-friendly

Outline

Tool of the day: 3D Visualization

Parallel Patterns

Partition
Obtaining partitions
Pipelines
Reduction
Map-Reduce
Scan
Divide-and-Conquer
General Data Dependencies

General Dependency Graphs

$$
\begin{aligned}
& \mathrm{B}=\mathrm{f}(\mathrm{~A}) \\
& \mathrm{C}=\mathrm{g}(\mathrm{~B}) \\
& \mathrm{E}=\mathrm{f}(\mathrm{C}) \\
& \mathrm{F}=\mathrm{h}(\mathrm{C}) \\
& \mathrm{G}=\mathrm{g}(\mathrm{E}, \mathrm{~F}) \\
& \mathrm{P}=\mathrm{p}(\mathrm{~B}) \\
& \mathrm{Q}=\mathrm{q}(\mathrm{~B}) \\
& \mathrm{R}=\mathrm{r}(\mathrm{G}, \mathrm{P}, \mathrm{Q})
\end{aligned}
$$

General Dependency Graphs

$$
\begin{aligned}
& B=f(A) \\
& C=g(B) \\
& E=f(C) \\
& F=h(C) \\
& G=g(E, F) \\
& P=p(B) \\
& Q=q(B) \\
& R=r(G, P, Q)
\end{aligned}
$$

Mapping to Mechanisms

- OpenMP?

Mapping to Mechanisms

- OpenMP?
- MPI?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?

Mapping to Mechanisms

- OpenMP?
- MPI?
- MPI: Larger than \# ranks?
- GPU?

Cilk

```
cilk int fib (int n)
{
    if (n<2) return n;
    else
    {
        int x, y;
        x = spawn fib (n-1);
        y = spawn fib (n-2);
        sync;
        return (x+y);
    }
}
```

Features:

- Adds keywords spawn, sync, (inlet, abort)
- Remove keywords \rightarrow valid (seq.) C
Timeline:
- Developed at MIT, starting in '94
- Commercialized in ‘06
- Bought by Intel in '09
- Available in the Intel Compilers

Cilk

cilk int fib (int n)
\{

```
if (n<2) return n;
else
    {
        int x, y;
    x = spawn fib (n-1);
    y = spawn fib ( }n-2\mathrm{ );
```

 sync;
 return (\(\mathrm{x}+\mathrm{y}\));
 Efficient implementation?

Features:

- Adds keywords spawn, sync, (inlet, abort)
- Remove keywords \rightarrow valid (seq.) C
Timeline:
- Developed at MIT, starting in '94
- Commercialized in '06
- Bought by Intel in '09
- Available in the Intel Compilers

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

P)

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

P)

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim's deque.

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim's deque.

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim's deque.

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim's deque.

With material by
Charles E. Leiserson (MIT)

Work-Stealing

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of
Why is Work-Stealing better than a Task Queue?

With material by
Charles E. Leiserson (MIT)

General Graphs: Implementations

- Intel Cilk(+) (also: vector math)
- OpenCL ("Events", Out-of-order queues)
- Intel Thread Building Blocks
- StarPU
- (Charm++)
- Many more

General Graphs: Issues

- Model can accommodate 'speculative execution'
- Launch many different 'approaches'
- Abort the others as soon as one satisfactory one emerges.
- Discover dependencies, make up schedule at run-time
- Usually less efficient than the case of known dependencies
- Map-Reduce absorbs many cases that would otherwise be general
- On-line scheduling: complicated
- Not a good fit if a more specific pattern applies
- Good if inputs/outputs/functions are (somewhat) heavy-weight

Questions?

?

Image Credits

- Pipe: sxc.hu/mterraza
- Tree: sxc.hu/bertvthul
- Radar: sxc.hu/KimPouss
- Quadtree: flickr.com/ethanhein ©

