
High-Performance Scientific Computing (MATH-GA 2011/ CSCI-GA 2945)

Homework Set 6
Out: October 20, 2012 · Due: November 1, 2012

Since all of you are by now itching to get started on your projects, this will be the last homework
set. (We may issue more problem sets later purely for your entertainment.)

Problem 1: MPI Bugs

Oh no! Uncle Blaise has written more parallel programs, this time with MPI, and they’re once
again all wrong. Can you help him out? :) In the repository at https://github.com/hpc12/

hw6-problem1, you’ll find seven MPI programs, each of which has one or more bugs, detailed in
the comments at the start of the source file.

Once again, note that these are well-known programs, and it’s super-simple to find solutions for
them on the web. We’re aware of that. To state the obvious, you’ll get more out of this problem if
you try to do them on your own.

Turn in a fixed version of each program with the same file name as in the source repository above,
all in a subdirectory ‘problem-1’ of your repository. Try to make sure that the output of

diff -u original/mpi_bugN.c hpc12-hw6-netid123/problem-1/mpi_bugN.c

makes sense, because that’s what I’ll be looking at.

Here’s a summary of what’s wrong with each program, and what the fixed version should do:

Program Desired behavior

mpi bug1.c The message should be passed without any rank encountering a hang.
mpi bug2.c The message should be passed without undefined behavior–no wrong data, no

crashes, etc.
mpi bug3.c The message should be passed successfully.
mpi bug4.c The final sum should be computed correctly. The code refers to mpi array.c,

which is present in the repository.
mpi bug5.c The program contains an endless loop. The endless loop will cease to make

progress after a few thousand iterations. In a comment in the code, explain
what’s going on, referring to sections of the MPI standard as necessary. Next,
ensure that the program makes progress without long hangs.

mpi bug6.c Requires 4 ranks. Both pairs of tests should complete without an error.
mpi bug7.c The broadcast should not hang.

Problem 2: Faster matrix multiplication

This problem is a more performance-conscious take on matrix multiplication, improving on what
you did in homework 1. In particular, we will be a bit more mindful of processor architecture and
the availability and size of close memory. As we saw in class, matrix multiplication–because of its
theoretically high arithmetic intensity–stands a good chance of making use of this.

Some of the lower-level tuning techniques mentioned throughout will make more sense once you’ve
learned what we’ll cover in the lecture next Wednesday, but the problem is entirely doable without
that knowledge. Also, in case you are wondering, these instructions may seem fairly lengthy, but
the actual code you write will turn out relatively short and straightforward.

1

https://github.com/hpc12/hw6-problem1
https://github.com/hpc12/hw6-problem1

To make better use of close and far memories, we will be using two levels of blocking in our code,
where each successive level of blocking corresponds to memory at an increasing distance from the
processor. We’ll see on Wednesday that these, aside from registers, are different-level ‘caches’,
called “L1”, “L2”, and so on, up to “LLC”, the ‘last-level-cache’.

For this assignment, matrix multiplication is supposed to carry out this operation–note that we’re
adding onto the existing value of C:

for i = 1 to n

for j = 1 to n

for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]

All matrices in this assignment are stored in column-major order.

a) Write a test and timing harness (perhaps based on your work for homework 1). This should
be your main program, which takes three arguments. We’ll call the arguments n, ntrips, and
use variant.

• n is the size of the matrices to use.

• ntrips is the number of repetitions to perform inside the timing loop.

• use variant is an integer which decides which variant of the matrix multiplication to call.

These variants referred to by the last parameter are (use variant == 0)

void dgemm_simple(

const int M, const double *A, const double *B, double *C)

and (use variant == 1)

void dgemm_tuned(

const int M, const double *A, const double *B, double *C)

and a few more as mentioned below.

For now, leave the definition of dgemm tuned empty, and fill dgemm simple with a simple triple-
loop matrix multiplication. You may use dgemm simple as the reference calculation to check
against. (So initially you’ll be checking dgemm simple against itself–that’s ok.)

Your program should then do the following, in order:

• Allocate and fill square of size n × n random numbers drawn reasonably uniformly from
the interval [1, 2).

• Run a test on the chosen variant, to make sure its results match the known-good calculation.
Check that the results match to a tolerance of 10−5. Because of the addition semantics on
C, make sure to initialize C with zero before starting the test.

• Run ntrips matrix multiplications using the chosen variant.

• Output a timing of the previous step in units of millions of floating point operations per
second. (MFlops/s) You may use the approximation that a matrix multiplication performs
2n3 flops.

2

By the way, if you’re wondering about the funny name, DGEMM is the name commonly used by
the BLAS1 for ‘double-precision general-form matrix multiply’.

Run your code with the simple variant for the following matrix sizes

31, 32, 96, 97, 127, 128, 129, 191, 192, 229, 255, 256, 257, 319, 320, 321, 417, 479, 480,
511, 512, 639, 640, 767, 768, 769, 1024

and report your performance findings. A shell command like the following can help you automate
this task:

for n in 31 32 96 97 127 128 129 191 192 229 \

255 256 257 319 320 321 417 479 480 511 512 639 \

640 767 768 769 1024; do

./matmul $n 10 0

done

(Copy and paste is your friend here–you can even automate this by using a shell script. Shell
scripting will be tool of the week on October 31.)

Report performance in the following format:

printf("use_variant: %d size: %d - performance: %g MFlops/s\n",

...);

Make sure to use the same machine for these performance numbers and the ones you report
further down. In your report, please also provide the output of

cat /proc/cpuinfo | grep "model name"

(or find your processor model number in some other way). Keep repeated lines in the output.
Also state the output of

uname -a

and whether you are running inside a virtual machine.

b) Write and benchmark a fixed-size lowest-level square matrix multiplication. The intention is
for this to become the building block for the higher levels. The amount of data referenced by
this routine should be a few kilobytes, and definitely not more than fits into the L1 cache of the
machine you are targeting. Go with perhaps 8 kiB as a target value, for the subblocks of A, B,
and C combined.

Use the following prototype for your function:

static void dgemm_lowest(

const double*restrict A, const double*restrict B, double*restrict C)

Make sure to stick to this prototype. Notice the following things:

• There is no size passed to this function. This is a fixed-size computational kernel. The block
size processed by this function should be a global constant, which we’ll call L1 BLK SIZE.

The benefit of a fixed-size routine is that the compiler can do a better job generating code,
simply because the loop bounds and strides are known a priori.

1https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

3

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

• static allows the compiler to do perform inter-procedural optimizations (because it guar-
antees that the compiler knows about all sites that call this function).

• restrict is a promise about something called ‘pointer aliasing’ which we’ll cover next
Wednesday.

For this routine to be useful to higher levels, it should be adding its result to C, just like the
top-level routine.

Interface your test harness from the previous part to dgemm lowest, by writing code that does
the following:

• Check that the right-size matrix is being passed in.

• Copy the input matrices to the temporary arrays a block and b block, using the rou-
tines and data provided in this code snippet2. Note that the storage size is dictated by
L2 BLK SIZE, by ways of the value ANOTHER INTEGER in this code, which we haven’t fixed
yet. Just set this to 1 for now.

• Make sure that the routine passes the correctness test.

• Run dgemm lowest for ntrips loops.

• Output timing information as above.

Make the value use variant==2 enter this part of your code.

Carry out a systematic study of:

• loop ordering (realize that the loops can be interchanged without changing the meaning)

• block size

Write about your performance findings in your report, and (as a second step) try to explain
them in terms of the pipelining issues we’ll learn about next Wednesday.

c) Include an assembly listing of your lowest-level routine in your report. Finding this routine may
require some searching, as the compiler may have ‘inlined ’ the code into a higher-level routine.
(If you need help, try removing the static keyword. Make sure to add it back later.) Comment
each line of what you believe to be the core computational loop with what you think the code
is doing at that point. Use Google to find the meaning of instructions you don’t understand.

d) Write a second-level matrix multiply that uses your lowest-level routine in the fashion depicted
in the lecture slides for lecture 7, PDF pages 88–91. Note that this routine still works on a fixed
size, given by L2 BLK SIZE, which is an integer multiple of L1 BLK SIZE.

Interface this code to the test harness as above, using use variant==3 as the switch value to
enter this branch.

Again carry out a systematic study of:

• (block) loop ordering

• block size multiple (called ANOTHER INTEGER in the code snippet given above).

Write about your performance findings in your report.

2https://gist.github.com/4045f6dabd1d04192098

4

https://gist.github.com/4045f6dabd1d04192098
https://gist.github.com/4045f6dabd1d04192098

e) Write a top-level matrix multiplication routine that uses your second-level routine, once again
in the same fashion as described in the slides. This code should go into dgemm tuned, which you
left empty above.

Note that this routine will have to handle all matrix sizes, requiring you to handle computational
blocking boundary cases. The recommended way of doing so is by filling unoccupied spots in
and a block, b block with zeros, and only copying out the parts of c block that are desired
in the output matrix. Convince yourself that this does the right thing mathematically.

You may once again use the blocking helper routines given in the code snippet.

Report performance for the same matrix sizes as in part 1. Try and interpret your results.

f) Add OpenMP-based parallelization to your code, and check if you see a benefit. Answer the
following questions in your report:

i. Which is the best level on which to add parallelization?

ii. Which loops (i, j, k?) are parallelizable, which ones are not?

iii. Report performance for the same matrix sizes as in part 1.

Turn in:

• a file problem-2/dgemm.c containing all the code described in this assignment.

• problem-2/Makefile that builds your code with your chosen compiler and flags.

• problem-2/report.txt

Hints:

• While not as satisfying as being able to see what manual optimizations cause what sort of
speed-up, compiler flags can also make a large difference in execution speed.

– -O3 is your basic ‘go-fast’ option.

– -march=native -mtune=native tell gcc to tune for the machine you are currently using.

– -ftree-vectorize—see here3 for more.

Check this4 and this5 link for an overview of other options.

• It’s somewhat more instructive to do this exercise on a real machine compared to the ‘fake’
one presented by the virtual machine. On my computer, the 64-bit virtual machine is about
20% slower than the ‘real’ processor, whereas the 32-bit machine loses about 50%. (32-bit
Intel processors have a tiny register file–just 8 general purpose registers. That’s one reason
why the 32-bit machine does so poorly. If your OS is just 32-bit, you are effectively running
your computer with the handbrake on–FYI. :)

Part of the reason for this is that the virtual machine simulates a simpler processor, so the
‘native’ tuning flags do not have their full range of benefits.

3http://gcc.gnu.org/projects/tree-ssa/vectorization.html
4http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/i386-and-x86_002d64-Options.html
5http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Invoking-GCC.html

5

http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/i386-and-x86_002d64-Options.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Invoking-GCC.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/i386-and-x86_002d64-Options.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Invoking-GCC.html

If you don’t have access to a real Linux machine with a new gcc (version 4.7 or newer), you may
want to consider using compute nodes on cuda or bowery for this exercise. Unfortunately, the
gcc installed there is old and generates very slow code. You may therefore want to investigate
using the Intel compiler. Use

module load intel/11.1.046

on Bowery and

module load intel/11.1.083

on cuda to make it available as icc. Then check this6 link for an overview of optimization
options.

• Once we’ve discussed caches, it may be helpful to use valgrind --tool=cachegrind to see
the cache behavior of your code. To make sure the observed values correlate with your actual
processor, find its cache sizes as shown in next Wednesday’s class and match its parameters
in Valgrind using

--D1=<size>,<assoc>,<line_size>

--LL=<size>,<assoc>,<line_size>

(You should match Valgrind’s LLC to your L2 cache.)

• We’ll hold a (light-hearted, not terribly serious) contest for the fastest code. We’ll be using the
compute nodes on the CUDA cluster for comparison. If you’d like to enter the contest, have
a Makefile target matmul-contest that builds on the CUDA cluster, likely with the Intel
compiler. You can use a compiler argument -DCONTEST and #ifdef CONTEST/#else/#endif

in your source code to write contest-specific code or parameter values, should you need to.

Entries will be ranked by their average performance across all of the above matrix sizes, and
the top three entries will receive a bag of M&Ms.

6http://software.intel.com/sites/default/files/compiler_qrg12.pdf

6

http://software.intel.com/sites/default/files/compiler_qrg12.pdf
http://software.intel.com/sites/default/files/compiler_qrg12.pdf

