
High-Performance Scientific Computing (MATH-GA 2011/ CSCI-GA 2945)

Homework Set 3
Out: September 26, 2012 · Due: October 3, 2012

This homework set lets you practice simple uses of OpenCL. There is an OpenCL implementation
available on your virtual machine, but don’t expect it to be blazingly fast. Since running on GPUs
is a large part of the point of OpenCL, at the end of this assignment you can find some instructions
for running your code on GPUs available on NYU’s HPC clusters. For now, this is an optional
(but highly recommended) part of this assignment. Since we’ll be using these machines more over
time, it’ll be helpful to get started on using them now. In order to use them, you’ll need an HPC
account. To get one, you may need to request one at the account request page1.

You may use the Lecture 4 demo code2 as a starting point. (Make sure to look at the files ending
in -soln.c, not the intentionally problematic ‘initial’ codes.

Problem 1: Image + OpenCL warm-up

Read in two numbers w and h from the command line and allocate three buffers red, green, blue
on the compute device, each sufficient for w × h unsigned chars.

Write an OpenCL kernel that fills the buffers above with linearly blended colors such that

• The red channel is zero on the left-hand side of your image and 255 (the maximum channel
value) on the right-hand side of your image.

• The blue channel is zero on the top of your image and 255 (the maximum channel value) on
the bottom of your image.

• The green channel is zero everywhere.

Write your kernel with a work group size of 1× 1 and a global size of w × h.

Use the library routines provided in this repository3 to write a PPM4 (“portable pixmap”) image
file called linear-blend.ppm. The file test-ppm.c demonstrates the use of the library.

You may look at the resulting image by typing

display linear-blend.ppm

This command is preinstalled on your virtual machine. If you’re not using the VM, find an image
viewer that can display PPM images.

Note that images are conventionally represented in row-major order. In other words, the x coordi-
nate varies fastest in memory.

Turn in a main C file problem-1/blend.c along with a kernel file problem-1/linear-blend.cl.
Also turn in a Makefile that builds your code.

Also, please make sure to not check the generated image files into git. (You’ll kill my server if you
do. I’m not kidding.)

1https://wikis.nyu.edu/display/NYUHPC/Request+or+Renew
2https://github.com/hpc12/lec4-demo
3https://github.com/hpc12/hw3-ppm
4https://en.wikipedia.org/wiki/Netpbm_format

1

https://wikis.nyu.edu/display/NYUHPC/Request+or+Renew
https://github.com/hpc12/lec4-demo
https://github.com/hpc12/hw3-ppm
https://en.wikipedia.org/wiki/Netpbm_format
https://wikis.nyu.edu/display/NYUHPC/Request+or+Renew
https://github.com/hpc12/lec4-demo
https://github.com/hpc12/hw3-ppm
https://en.wikipedia.org/wiki/Netpbm_format

Problem 2: Compute a Mandelbrot set

The Mandelbrot set5 is a subset of the complex numbers that has a surprisingly simple mathe-
matical definition, but a surprisingly complicated mathematical structure. (Don’t know complex
numbers? Don’t panic, see below.)

Somewhat formally, it is defined as

{c ∈ C : The sequence defined by z0 = 0, zn = z2n−1 + c becomes > 2 in magnitude for some n}.

If your complex number skills are a bit rusty: A complex number consists of two real numbers
(think floats) z = (a, b). If we let c = (x, y) and zn = (an, bn) (for n ≥ 0), then the above formula
can be expressed as

an = x− b2n−1 + a2n−1

bn = y + 2an−1bn−1

a) Read in two numbers w and h from the command line and allocate three buffers red, green,
blue on the compute device, each sufficient for w × h unsigned chars.

b) Write an OpenCL kernel that carries out the Mandelbrot iteration for c = (x, y). Let x vary
linearly from xleft and xright on the left and right, and let y vary linearly from ytop and
ybottom, on the respective ends of your image. Pass these values as parameters to your kernel.

Use the following values for the work you turn in:

xleft −2.13

xright 0.77

ytop 1.3

ybottom −1.3

But feel free to play around.

For each pixel of the image, run at most max iter iterations, where that is another parameter
to your kernel. Stop the iteration when the square of the magnitude of the iterate reaches
greater than four. For a complex number z = (a, b), the square of the magnitude is computed
as |z|2 = a2 + b2.

Store the number of iterations until four is exceeded in all channels (red, green, blue) of your
image, in such a way that if you used max iter iterations, the value becomes 255. (You may use
more ‘interesting’ color maps, too, if you like.) Store the resulting image as mandelbrot.ppm.

Write your kernel with a work group size of 1× 1 and a global size of w × h.

c) Modify your OpenCL kernel so that it uses a workgroup size of 16×16, but make sure that your
program can still be run with any w and h. (I.e. you will have to handle edge cases.) Store the
resulting image as mandelbrot-large-wg.ppm.

d) Use the timing.h infrastructure from the last two homeworks to time the execution of both
the small-workgroup and the large-workgroup case. Make sure to wait for the compute device
to finish its job in the right places. Output the performance in millions of pixels per second for
each case, to three decimal places.

5https://en.wikipedia.org/wiki/Mandelbrot_set

2

https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set

e) Make sure you free/release all your buffers, command queues, host memory, and whatever other
resources you’ve used.

Also make sure that you check for error returns on all functions that can fail, including malloc

and OpenCL interface functions.

Turn in a main C file problem-2/mandelbrot.c along with kernel files problem-2/small-wg.cl

and problem-2/large-wg.cl, corresponding to parts b) and c). Make sure that mandelbrot.c

exercises all parts of this assignment as described above when compiled and run. Also turn in a
Makefile that builds your code.

Lastly, please make sure to not check the generated image files into git. (You’ll kill my server if
you do. I’m not kidding.)

3

High-Performance Scientific Computing (MATH-GA 2011/ CSCI-GA 2945)

Access to the NYU clusters

Logging into a cluster

All access to the high-performance machines at NYU goes through hpc.nyu.edu (a.k.a. the “bas-
tion host”). You may log in using SSH6:

your-machine$ ssh NETID@hpc.nyu.edu

Your user name on this machine is your NYU NetID (the same one you use to log into NYUHome).
Likewise, your password is the same one you use to access NYUHome.

Note 1 As before, the dollar sign “$” represents a command prompt. The actual command you
need to type follows after that. For clarity, a symbolic host name may precede the dollar sign.

The virtual machine comes with ssh pre-installed. If you are using a Windows machine, you may
use PuTTY7.

The first time you log in, the system will warn you that it does not know about hpc.nyu.edu; just
say “yes” to log in and permanently accept this machine as a known host.

From the bastion host, more or less the only thing you can do is use SSH to access other machines.
To reach the “cuda” cluster, type

hpc$ ssh cuda

To reach the “Bowery” cluster, type

hpc$ ssh bowery

The first time you log in to each, you will again get a warning from ssh. Proceed as above.

The first time you log in, you will also be prompted to set up an SSH key pair. This key pair serves
two purposes: First, it will allow your jobs to access the cluster’s compute nodes on which they are
supposed to run. Second, it will act as your key to the class collaboration space when logged in to
the NYU clusters.

Just hit Enter when prompted for a passphrase. The interaction will look something like this:

It doesn’t appear that you have set up your ssh key.

This process will make the files:

/home/NETID/.ssh/id_rsa.pub

/home/NETID/.ssh/id_rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/NETID/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

6http://en.wikipedia.org/wiki/Secure_Shell
7http://www.chiark.greenend.org.uk/~sgtatham/putty/

4

http://en.wikipedia.org/wiki/Secure_Shell
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://en.wikipedia.org/wiki/Secure_Shell
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Enter same passphrase again:

Your identification has been saved in /home/NETID/.ssh/id_rsa.

Your public key has been saved in /home/NETID/.ssh/id_rsa.pub.

The key fingerprint is: ...

Now you are logged into the cluster! More precisely, you will be logged into the cluster’s so-
called ‘head node’. You may compile your programs there, but you are not supposed to run large
computations on that machine. See the instructions below on how to start computation jobs.

Editing files on the clusters

A simple, friendly, somewhat bare-bones editor is available by typing

$ nano filename.c

Moving files to and from NYU HPC

See this wiki page8 on how to move data back and forth between your computer and the HPC
clusters. (Note that if you’re moving source code, git via forge is usually more convenient.)

Note that if you have access to a machine that has SCP/SFTP accessible from the outside network
(such as access.cims.nyu.edu), you can avoid the tedious two-step process via the bastion host
by initiating file transfers from the clusters.

Using git on the clusters

To use git on ‘cuda’, you need to type

$ module load git/gnu/1.7.2.3

and on ‘bowery’, you need to type

$ module load git/intel/1.7.6.3

To avoid having to type this every time, consider adding this command to the .bashrc (note the
dot!) file in your home directory.

NYU uses the software “Environment Modules9” to manage a variety of software installed on its
clusters. By typing the ‘module load’ command above, you have already used this system to allow
you to use git. You may type

module avail

to find which other software modules are available. In particular, you may choose to use the
Intel Compilers10 instead of the default GNU ones. Like git, these compilers are activated through
the module load commands. The NYU HPC Wiki describes these compilers in more detail.

Next, inform git of your name and email address, as before:

8https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling
9http://modules.sourceforge.net/

10http://en.wikipedia.org/wiki/Intel_C%2B%2B_Compiler

5

https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling
http://modules.sourceforge.net/
http://en.wikipedia.org/wiki/Intel_C%2B%2B_Compiler
https://wikis.nyu.edu/display/NYUHPC/SCP+through+SSH+Tunneling
http://modules.sourceforge.net/
http://en.wikipedia.org/wiki/Intel_C%2B%2B_Compiler

$ git config --global user.name "Your Name Here"

$ git config --global user.email you@yourdomain.example.com

Next, while you are logged into each clster, type

cluster$ cat $HOME/.ssh/id_rsa.pub

This will print a few lines (technically, just one wrapped line) that looks like this:

ssh-rsa AAAABw...vM3XdIbZWwmXH/iNbFWEhZw== NETID@login-0-1.local

Once you are logged into forge, click your name in the top left corner. Click “Update your account”
on the left and then paste the line returned above into the field that says “Add public key”. Click
“Update your Account”. The key update may take up to two minutes to fully complete, so if any
steps involving git below fail, wait for two minutes, and then try again. This completes the setup
steps that are only required once for each cluster.

Next, you may ‘clone’ an existing homework repository by using

git clone ssh://git@forge.tiker.net:2234/hpc12-hw3-netid123.git

You may make some changes here, do git add and git commit. git push will upload them ‘to
the cloud’. Likewise, git pull will download. That should help you get started. Git will also be
next week’s ‘tool of the week’ in the lecture.

Running code on the clusters

Here is a sample transcript that starts just after I logged in to the ‘cuda’ cluster:

First, we’re getting a list of all ‘queues’ supplied by the scheduler

on ‘cuda’.

[ak177@cuda ~]$ qstat -Q

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext T

---------------- --- --- --- --- --- --- --- --- --- --- -

serial 0 0 yes yes 0 0 0 0 0 0 E

interactive 0 4 yes yes 0 0 0 0 0 0 E

default 0 0 yes yes 0 0 0 0 0 0 E

batch 0 0 yes yes 0 0 0 0 0 0 E

p12 0 0 yes yes 0 0 0 0 0 0 E

Next, we’re submitting an interactive job (-I) to a queue

named ‘interactive’ (-q).

[ak177@cuda ~]$ qsub -q interactive -I

qsub: waiting for job 2113.cuda.es.its.nyu.edu to start

qsub: job 2113.cuda.es.its.nyu.edu ready

Even if you loaded the git module on the head node, you may have to do this

again now, because you’re now logged into a new machine, a ‘compute node’.

Observe how the prompt has changed.

[ak177@compute-0-3 ~]$ module load git/gnu/1.7.2.3

6

We’ll grab the lecture demos...

[ak177@compute-0-3 ~]$ git clone git://github.com/hpc12/lec4-demo

Cloning into lec4-demo...

remote: Counting objects: 65, done.

remote: Compressing objects: 100% (39/39), done.

remote: Total 65 (delta 34), reused 56 (delta 25)

Receiving objects: 100% (65/65), 30.94 KiB, done.

Resolving deltas: 100% (34/34), done.

[ak177@compute-0-3 ~]$ cd lec4-demo/

...and build them.

[ak177@compute-0-3 lec4-demo]$ make

gcc -c -std=gnu99 cl-helper.c

gcc -std=gnu99 -lrt -lOpenCL -ovec-add vec-add.c cl-helper.o

gcc -std=gnu99 -lrt -lOpenCL -ovec-add-soln vec-add-soln.c cl-helper.o

gcc -std=gnu99 -lrt -lOpenCL -oprint-devices print-devices.c cl-helper.o

gcc -std=gnu99 -lrt -lOpenCL -otranspose transpose.c cl-helper.o

gcc -std=gnu99 -lrt -lOpenCL -otranspose-soln transpose-soln.c cl-helper.o

Let’s see what devices we have here:

[ak177@compute-0-3 lec4-demo]$./print-devices

platform 0: vendor ’NVIDIA Corporation’

device 0: ’GeForce GTX 285’

platform 1: vendor ’Advanced Micro Devices, Inc.’

device 0: ’Intel(R) Xeon(R) CPU E5405 @ 2.00GHz’

Let’s run the vector addition demo.

[ak177@compute-0-3 lec4-demo]$./vec-add-soln 10000000 10

create_context_on: specified device not found.

Aborted

Ok, the code is still looking for the "Intel" platform, which doesn’t

appear to exist here. Let’s change "Intel" to "NVIDIA":

[ak177@compute-0-3 lec4-demo]$ nano vec-add-soln.c

Rebuild the code:

[ak177@compute-0-3 lec4-demo]$ make

gcc -std=gnu99 -lrt -lOpenCL -ovec-add-soln vec-add-soln.c cl-helper.o

And off we go:

[ak177@compute-0-3 lec4-demo]$./vec-add-soln 10000000 10

0.001777 s

135.051488 GB/s

GOOD

This command returns you to the head node and frees up the machine

for other people. Since the machines are a shared resource, it’s

common courtesy to log out if you’re not actively using the compute node

7

you’re logged # into. (It’s fine to stay logged into the head node.)

[ak177@compute-0-3 lec4-demo]$ exit

8

